Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 79-82    https://doi.org/10.11896/j.issn.1005-023X.2017.07.012
  材料综述 |
关于镁合金中长周期有序结构的研究综述*
蒲治军1,陈东杰2,张奎2,李兴刚2,李永军2,马鸣龙2,石国梁2,袁家伟2,李蒙2
1 中国工程物理研究院机械制造工艺研究所,绵阳 621999;
2 北京有色金属研究总院,有色金属材料制备加工国家重点实验室,北京 100088
A Review About Long-period Stacking Ordered Structure in Magnesium Alloys
PU Zhijun1, CHEN Dongjie2, ZHANG Kui2, LI Xinggang2, LI Yongjun2,MA Minglong2, SHI Guoliang2,YUAN Jiawei2,LI Meng2
1 Institute of Machinery Manufacturing Technology,China Academy of Engineering Physics,Mianyang 621999;
2 State Key Laboratory for Fabrication and Processing of Nonferrous Metals, General Research Institute for Nonferrous Metals, Beijing 100088
下载:  全 文 ( PDF ) ( 1476KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 系统地介绍了6H、10H、14H、18R、24R型LPSO结构的原子堆垛和RE、Zn的占位特点,探讨了LPSO结构的形成条件和形成机制,分析了含LPSO结构相合金的组织演变过程并概述了组织演变方面最新的研究成果,总结了含LPSO结构相镁合金的室温和高温性能的研究现状,最后对该类合金未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒲治军
陈东杰
张奎
李兴刚
李永军
马鸣龙
石国梁
袁家伟
李蒙
关键词:  镁合金  长周期有序结构  组织演变    
Abstract: This paper introduces the atom stacking and Zn and RE occupying characteristic of 6H,10H,14H,18R,24R LPSO(Long-period stacking ordered)structure, discusses the forming condition and mechanism of LPSO structure, analyzes the phase evolution in alloy containing LPSO structure and summarizes the latest research results in the organization evolution,and reviews the research status of mechanical property in room temperature and high temperature. Finally, the paper proposes several research directions of the alloy containing LPSO structure.
Key words:  magnesium alloy    long-period stacking ordered structure    microstructural evolution
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TG146.2+2  
基金资助: *国家重点基础研究发展计划课题(2013CB632202;2013CB632205);国家自然科学基金项目(51204020);青海省科技支撑计划项目(2014-GX-106A)
通讯作者:  陈东杰,男,1992年生,博士研究生,研究方向为先进镁合金材料及其制备加工E-mail:chendjie@126.com   
作者简介:  蒲治军:男,1975年生,硕士,高级工程师,研究方向为有色金属材料制备加工
引用本文:    
蒲治军,陈东杰,张奎,李兴刚,李永军,马鸣龙,石国梁,袁家伟,李蒙. 关于镁合金中长周期有序结构的研究综述*[J]. 《材料导报》期刊社, 2017, 31(7): 79-82.
PU Zhijun, CHEN Dongjie, ZHANG Kui, LI Xinggang, LI Yongjun,MA Minglong, SHI Guoliang,YUAN Jiawei,LI Meng. A Review About Long-period Stacking Ordered Structure in Magnesium Alloys. Materials Reports, 2017, 31(7): 79-82.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.012  或          https://www.mater-rep.com/CN/Y2017/V31/I7/79
1 Kawamura Y, Hayashi K, Inoue A, et al.Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa[J].Mater Trans,2001,42(7):1172.
2 Li M, Zhang K, et al. The effect of homogenization on microstructures and mechanical properties of Mg-7Gd-3Y-1Nd-xZn-0.5Zr(x=0.5, 1 and 2wt%) alloys[J]. Mater Charact,2015,109:66.
3 Li Meng. Study on the microstructures and properties of Mg-Gd-Y-Nd-Zn based alloys containing long-period stacking ordered phase[D]. Beijing: Beijing General Research Institute of Nonferrous Me-tals,2016(in Chinese).
李蒙. 含长周期有序结构相的Mg-Gd-Y-Nd-Zn系合金组织与性能研究[D]. 北京:北京有色金属研究总院,2016.
4 Lv B J, Peng J, Zhu L L, et al. The effect of 14H LPSO phase on dynamic recrystallization behavior and hot workability of Mg-2.0Zn-0.3Zr-5.8Y alloy[J]. Mater Sci Eng A,2014, 599(1):150.
5 Liu H, Feng X, Jing B, et al. Microstructures and mechanical pro-perties of Mg-2Y-xZn (x=1,2,3 at%) alloys[J]. Rare Metal Mater Eng,2014,43(3):570.
6 Shi F, Wang C, Guo X. Microstructures and properties of as-cast Mg92Zn4Y4 and Mg92Zn4Y3Gd1 alloys with LPSO phase[J]. Rare Metal Mater Eng,2015,44(7):1617.
7 Mi S B, Jin Q Q. New polytypes of long-period stacking ordered structures in Mg-Co-Y alloys[J]. Scr Mater,2013,68(8):635.
8 Kishida K, Yokobayashi H, Inui H, et al. The crystal structure of the LPSO phase of the 14H-type in the Mg-Al-Gd alloy system[J]. Intermetallics,2012,31(12):55.
9 Akihisa Inoue, Yoshihito Kawamura, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system[J]. J Mater Res, 2001,16(7):1894.
10 Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM[J]. Acta Mater,2002,50(15):3845.
11 Tang P Y, Tang B Y, Peng L M, et al. Effect of Y and Zn substitution on tensile properties of 6H-Type LPSO phase in Mg97Zn1Y2 alloy[J]. Adv Mater Res,2012,476-478:2469.
12 Tang P Y, Tang B Y, Peng L M, et al. Effect of Y and Zn substitution on elastic properties of 6H-type ABCBCB LPSO structure in Mg97Zn1Y2 alloy[J]. Mater Chem Phys,2012,131(3):634.
13 Zheng Liang, Liu Chuming, Wan Yingchun, et al. Microstructures and mechanical properties of Mg-10Gd-6Y-2Zn-0.6Zr(wt%) alloy[J]. J Alloys Compd,2011,509(35):8832.
14 Luo Z P, Zhang S Q.High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy[J].J Mater Sci Lett,2000,19(9):813.
15 Itoi T, Seimiya T, et al. Long period stacking structures observed in Mg97Zn1Y2 alloy[J]. Scr Mater,2004,51(2):107.
16 Hagihara K, Kinoshita A, Sugino Y, et al. Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composed of long-period stacking ordered phase[J]. Intermetallics,2010,18(5): 1079.
17 Zhu Y M, et al. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Mater,2010,58(8):2936.
18 Liu H,Bai J,Yan K,et al.Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg-Y-Zn alloys du-ring annealing at 773 K[J]. Mater Des,2016,93:9.
19 Li Yani. Investigate of the microstructures and properties of high performance Mg-Gd-Y-Zn-Mn alloys[D]. Chongqing: Chongqing University,2014(in Chinese).
李亚妮. 高性能Mg-Gd-Y-Zn-Mn合金组织与力学性能研究[D]. 重庆:重庆大学,2014.
20 Zhu Y M, Weyland M, et al. The building block of long-period structures in Mg-RE-Zn alloys[J]. Scr Mater,2009,60(11):980.
21 Yi Jianxiong. Theory computational study of the typical precipitates of Mg-Al-Ce and Mg-Y-Zn alloys[D]. Xiangtan: Xiangtan University,2010(in Chinese).
易建雄. Mg-Al-Ce和Mg-Y-Zn合金典型沉淀相的理论计算研究[D]. 湘潭:湘潭大学, 2010.
22 Yi J X, Tang B Y, Chen P, et al. Crystal structure of the mirror symmetry 10H-type long-period stacking order phase in Mg-Y-Zn alloy[J]. J Alloys Compd,2011,509(3):669.
23 Zhu Y M, et al. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys[J]. Acta Mater,2012,60(19):6562.
24 Kim J, Kawamura Y. Influence of rare earth elements on microstructure and mechanical properties of Mg97Zn1Y1RE1 alloys[J]. Mater Sci Eng A,2013,573(23):62.
25 Saal J E, Kirklin S, Aykol M, et al.Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD)[J]. JOM,2013, 65(11):1501.
26 Zhu Y M, Morton A J, Weyland M, et al. Characterization of planar features in Mg-Y-Zn alloys[J]. Acta Mater,2010,58(2):464.
27 Smith A. Surface, interface and stacking fault energies of magnesium from first principles calculations[J]. Surf Sci,2007,601(24):5762.
28 Kim J K, Ko W S, Sandl?bes S, et al. The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy[J]. Acta Mater,2016,112:171.
29 Liu H, Xue F, Bai J, et al. Effects of high temperature annealing on morphology of long period stacking ordered structures in as-cast and as-extruded Mg-Y-Zn alloy[J]. Acta Metall Sin,2013,49(10):1255(in Chinese).
刘欢,薛烽,白晶,等.高温退火对铸态和挤压态Mg97Y2Zn合金中长周期堆垛有序结构形态的影响[J]. 金属学报,2013,49(10):1255.
30 Fan T W, Tang B Y, Peng L M, et al. First-principles study of long-period stacking ordered like multi-stacking fault structures in pure magnesium[J]. Scr Mater,2011,64(10):942.
31 Li M, Zhang K, Du Z W, et al. Microstructure evolution and mechanical properties of Mg-7Gd-3Y-1Nd-1Zn-0.5Zr alloy[J]. Trans Nonferrous Metals Soc China,2016,26(7):1835.
32 Li M, Zhang K, Li X G, et al. Effect of Zn on the microstructure and mechanical properties of as-cast Mg-7Gd-3Y-1Nd-0.5Zr alloy[J]. Mater Sci Eng A,2015,638(10):46.
33 Yamasaki M, Nishijima M, Sasaki M, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Mater,2007,55(20):6798.
34 Homma T, et al. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion[J]. Scr Mater,2009,61(6):644.
35 Hagihara K, Kinoshita A, Sugino Y, et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy[J]. Acta Mater,2010,58(19):6282.
36 Yin D D, Wang Q D, et al. Creep behavior of Mg-11Y-5Gd-2Zn-0.5Zr (wt%) at 573 K[J]. Mater Sci Eng A,2012,546:239.
37 Yang Q, Xiao B L, Zhang Q, et al. Exceptional high-strain-rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long-period stacking ordered phase[J]. Scr Mater,2013, 69(s11-12):801.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[3] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[4] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[5] 夏二立, 叶拓, 邱飒蔚, 郭鹏程, 吴远志, 李落星. 不同加载路径和应变速率下挤压Mg-8.0Al-0.1Mn镁合金的力学响应行为[J]. 材料导报, 2024, 38(22): 24060132-8.
[6] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 不同加载路径下挤压WE43镁合金的高速冲击力学响应及本构模型[J]. 材料导报, 2024, 38(20): 24050146-9.
[7] 张娜娜, 李全安, 陈晓亚, 陈培军, 谭劲峰. 高性能镁合金轧制成形研究进展[J]. 材料导报, 2024, 38(2): 22080125-9.
[8] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[9] 程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
[10] 计鸿鑫, 任伟杰, 蒋先贤, 杜文宇, 孙静娜, 黄华贵. 镁合金板材弯曲回弹预测与控制研究进展[J]. 材料导报, 2024, 38(15): 23080183-7.
[11] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[12] 肖雯心, 王叶, 马凯, 代朝能, 裴三略, 王丹芊, 王敬丰. 镁合金表面化学转化涂层研究进展[J]. 材料导报, 2024, 38(12): 23010121-12.
[13] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[14] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[15] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed