Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23080234-7    https://doi.org/10.11896/cldb.23080234
  无机非金属及其复合材料 |
本征缺陷对δ-InSe光电性质的影响
苗瑞霞*, 张德栋, 谢妙春, 王业飞, 杨小峰
西安邮电大学电子工程学院,西安 710121
The Impact of Intrinsic Defects on the Optical and Electrical Properties of δ-InSe
MIAO Ruixia*, ZHANG Dedong, XIE Miaochun, WANG Yefei, YANG Xiaofeng
College of Electronic Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
下载:  全 文 ( PDF ) ( 12546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种典型的二维层状材料,二维InSe由于其独特的电学特性和较宽的带隙可调节范围,在新型二维电子和光电器件中具有广阔的应用前景。通过全局结构搜索和第一性原理计算发现的δ-InSe结构比已知的InSe结构具有更宽的带隙变化范围和更高的载流子迁移率。然而有关本征缺陷对δ-InSe电学和光学性质的研究尚未开展。本工作基于密度泛函理论的第一性原理,研究了δ-InSe结构中的本征缺陷对其光电性质的影响。结果表明:硒间隙缺陷Sei在富In和富Se的情况下都具有最小的形成能,是单层δ-InSe中最主要的缺陷。在施主类缺陷中,铟间隙缺陷Ini作为浅能级缺陷,能够引起δ-InSe中n型导电特性,而受主类缺陷均为深能级缺陷,很难引起δ-InSe的p型导电特性。硒单空位缺陷VSe1、铟双空位缺陷VIn2、硒双空位缺陷VSe2和铟间隙缺陷Ini的引入能够使δ-InSe复介电函数的虚部和光吸收系数向低能区偏移,增强在可见光区域的光吸收强度,并对红外光区也产生了一定的吸收效应。此外,随着空位缺陷浓度的增加,缺陷能级数量变多,电子跃迁所需要的能量减少,吸收光谱发生红移。本研究有助于理解δ-InSe的缺陷性质,为δ-InSe的制备提供一定的理论指导,有助于推动δ-InSe在光电器件中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苗瑞霞
张德栋
谢妙春
王业飞
杨小峰
关键词:  第一性原理  本征缺陷  形成能  电学性质  光学性质    
Abstract: As a typical two-dimensional layered material, InSe has broad prospects in new two-dimensional electronic and optoelectronic devices due to its unique electrical properties and wide range of adjustable bandgaps. The δ-InSe structure discovered through global structural search and first-principles calculations has a wider bandgap variation range and higher carrier mobility compared to the known InSe structure. However, there is no research on the effects of intrinsic defects on the electrical and optical properties of δ-InSe. Based on first-principles density functional theory, here studied the impact of intrinsic defects on the optical and electrical properties of δ-InSe. The results showed that: the selenium interstitial defect has the smallest formation energy in both In-rich and Se-rich conditions, and is the main defect in single-layer δ-InSe. Among the donor-type defects, the indium interstitial defect Ini is a shallow-level defect that can cause n-type conductive behavior in δ-InSe, while the acceptor-type defects are deep-level defects that are difficult to cause p-type conductive behavior in δ-InSe. The introduction of selenium single vacancy defect VSe1, indium double vacancy defect VIn2, selenium double vacancy defect VSe2, and indium interstitial defect Ini can shift the imaginary part of the complex dielectric function and the optical absorption coefficient towards the lower energy region, enhance the optical absorption intensity in the visible light region, and also produce a certain absorption effect in the infrared light region. In addition, with the increase of vacancy defect concentration, the number of defect energy levels increases, and the energy required for electron transition decreases, resulting in a red shift of the absorption spectrum. This work will help to understand the defect properties of δ-InSe, provide theoretical guidance for the preparation of δ-InSe, and promote the application of δ-InSe in optoelectronic devices.
Key words:  first-principles    intrinsic defects    formation energy    electrical property    optical property
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  O469  
基金资助: 国家自然科学基金(51302215;62105260;12004303)
通讯作者:  * 苗瑞霞,西安邮电大学电子工程学院教师、硕士研究生导师。2010年西安电子科技大学微电子与固体电子学专业博士毕业后到西安邮电大学工作至今。目前主要从事二维半导体材料与器件等方面的研究工作。主持完成国家自然科学基金1项,参与省级自然科学基金多项,发表高水平研究论文30余篇,其中SCI及EI检索18篇,授权专利2项。miao9508301@163.com   
引用本文:    
苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
MIAO Ruixia, ZHANG Dedong, XIE Miaochun, WANG Yefei, YANG Xiaofeng. The Impact of Intrinsic Defects on the Optical and Electrical Properties of δ-InSe. Materials Reports, 2024, 38(23): 23080234-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080234  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23080234
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 666.
2 Qiao J, Kong X, Hu Z X, et al. Nature Communications, 2014, 5, 4475.
3 Ge X J, Qin D, Yao K L, et al. Journal of Physics D: Applied Physics, 2017, 50, 405301.
4 Cai Y, Zhang G, Zhang Y W. Journal of the American Chemical Society, 2014, 136, 6269.
5 Manzeli S, Ovchinnikov D, Pasquier D, et al. Nature Reviews Materials, 2017, 2, 1.
6 Radisavljevic B, Radenovic A, Brivio J, et al. Nature Nanotechnology, 2011, 6, 147.
7 Xu K, Yin L, Huang Y, et al. Nanoscale, 2016, 8, 16802.
8 Shi L B, Cao S, Yang M, et al. Journal of Physics: Condensed Matter, 2019, 32, 065306.
9 Huang W, Gan L, Li H, et al. CrystEngComm, 2016, 18, 3968.
10 Mudd G W, Svatek S A, Ren T, et al. Advanced Materials, 2013, 25, 5714.
11 Bandurin D A, Tyurnina A V, Yu G L, et al. Nature Nanotechnology, 2017, 12, 223.
12 Lei S, Ge L, Najmaei S, et al. ACS Nano, 2014, 8, 1263.
13 Tamalampudi S R, Lu Y Y, U R K, et al. Nano Letters, 2014, 14, 2800.
14 Chang J, Dong N, Wang G, et al. Applied Surface Science, 2021, 554, 149465.
15 Chang J, Zhao W, Wang G, et al. Physica Status Solidi (RRL)-Rapid Research Letters, 2021, 15, 2100171.
16 Alkauskas A, Mccluskey M D, Van de Walle C G. Journal of Applied Physics, 2016, 119, 181101.
17 Meyer J C, Kisielowski C, Erni R, et al. Nano Letters, 2008, 8, 3582.
18 Zhou W, Zou X, Najmaei S, et al. Nano Letters, 2013, 13, 2615.
19 Pham V T, Fang T H. Scientific Reports, 2020, 10, 15082.
20 Zheng T, Wu Z T, Nan H Y, et al. RSC Advances, 2017, 7, 54964.
21 Wang H, Shi J, Huang P, et al. Physica E: Low-dimensional Systems and Nanostructures, 2018, 98, 66.
22 Wang D, Li X B, Sun H B. Nanoscale, 2017, 9, 11619.
23 Sun Y, Li Y, Li T, et al. Advanced Functional Materials, 2020, 30, 2001920.
24 Wang D, Han D, Li X B, et al. Physical Review Letters, 2015, 114, 196801.
25 Hohenberg P, Kohn W. Physical Review, 1964, 136, B864.
26 Kohn W, Sham L J. Physical Review, 1965, 140, A1133.
27 Kresse G, Joubert D. Physical Review B, 1999, 59, 1758.
28 Mortensen J J, Hansen L B, Jacobsen K W. Physical Review B, 2005, 71, 035109.
29 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77, 3865.
30 Monkhorst H J, Pack J D. Physical Review B, 1976, 13, 5188.
31 Zhang S B, Northrup J E. Physical Review Letters, 1991, 67, 2339.
32 Xia S, Wang D, Chen N K, et al. Annalen der Physik, 2020, 532, 1900318.
33 Pereira P C N, Apolinario S W S. Physical Review E, 2012, 86, 046702.
34 Sang D K, Wang H, Qiu M, et al. Nanomaterials, 2019, 9, 82.
35 Ji Y J, Du Y J, Wang M S. Chinese Physics B, 2013, 22, 117103.
36 Wang H, Qin G, Yang J, et al. Journal of Applied Physics, 2019, 125, 245104.
37 Haldar S, Vovusha H, Yadav M K, et al. Physical Review B, 2015, 92, 235408.
[1] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[2] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[3] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[4] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[5] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[6] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[7] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[8] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[9] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[10] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[11] 范青青, 安立宝, 常春蕊, 张志明, 贾晓彤. 石墨烯负载Pdn(n=1—3)原子/团簇吸附三氯甲烷分子的第一性原理研究[J]. 材料导报, 2023, 37(21): 22050174-6.
[12] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[13] 林博文, 徐亦冬, 余德密. MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能[J]. 材料导报, 2023, 37(19): 22050098-6.
[14] 马柯榕, 张浩, 张永帅, 李坤, 杜秀娟, 杨雯. Mn在铁素体Fe-25%Cr合金中的迁移行为研究[J]. 材料导报, 2023, 37(19): 22040395-5.
[15] 孙翠翠, 毕舰镭. 边缘修饰对锗烯纳米带电子结构的影响[J]. 材料导报, 2023, 37(13): 21110002-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed