Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 107-111    https://doi.org/10.11896/j.issn.1005-023X.2017.016.022
  材料研究 |
Ni-25Cr-20Co合金时效组织结构及性能研究
魏力民1,2, 杨权1,2, 程义1,2, 谭舒平1,2
1 哈尔滨锅炉厂有限责任公司材料研究所, 哈尔滨 150046;
2 高效清洁燃煤电站锅炉国家重点实验室, 哈尔滨 150046
Microstructure and Properties of Ni-25Cr-20Co Alloy After Long-term Aging
WEI Limin1,2, YANG Quan1,2, CHENG Yi 1,2, TAN Shuping1,2
1 Material Research Institute of Harbin Boiler Co., Ltd, Harbin 150046;
2 State Key Laboratory of Efficient and Clean Coal-fired Utility Boilers, Harbin 150046
下载:  全 文 ( PDF ) ( 1536KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在Thermo-Calc热力学软件模拟计算基础上,采用光学显微镜、扫描电子显微镜、能谱检测和透射电子显微镜研究了Ni-25Cr-20Co合金在长期时效过程中析出相的变化情况及对性能的影响,理论分析了γ′相颗粒粗化对合金拉伸变形过程中第二相与位错交互作用机制的影响。结果表明:经750 ℃时效后合金中析出MC、M23C6和γ′相,γ′相的体积分数约为16%。长期时效后,γ′相颗粒的平均尺寸与时间t符合LSW理论,受溶质原子扩散及γ/γ′界面能的影响。时效后合金的拉伸强度明显增加,随时效时间的延长,拉伸强度逐渐降低。随γ′相的粗化,拉伸变形过程中第二相与位错交互作用的机制由位错热攀移机制→位错切割机制→Orowan绕越机制转变为位错热攀移机制→Orowan绕越机制→位错切割机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏力民
杨权
程义
谭舒平
关键词:  Ni-25Cr-20Co合金  长期时效  组织结构  γ′相  变形机制    
Abstract: Based on Thermo-Calc software, the microstructure and mechanical properties of Ni-25Cr-20Co alloy after long-term aging at 750 ℃ was investigated using OM, SEM, TEM and tensile testing. The relationship between dislocation resistance mechanism and γ′ phase size was calculated. The results show that MC, M23C6 and γ′ phase are the main precipitates, the volume fraction of γ′ phase is 16%. The growth kinetic of γ′ phase follows LSW theory, affecting by the diffusion of solute atoms and interface energy of γ/γ′. The tensile strength increases obviously after aging treatment. The tensile strength decreases with the extending aging time. Deformation mechanism in stretching process is changed with the growth of γ′ phase. When γ′ phase is small, deformation mechanism is climb mechanism→cut mechanism→Orowan mechanism. Deformation mechanism switch to climb mechanism→Orowan mechanism→cut mechanism when γ′ phase exceed critical value.
Key words:  Ni-25Cr-20Co alloy    long-term aging    microstructure    γ′ phase    deformation mechanism
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG113.12  
通讯作者:  谭舒平:通讯作者,男,1963年生,博士,研究员级高级工程师,研究方向为耐热材料研究及寿命分析 E-mail:beyond4650@163.com   
作者简介:  魏力民:男,1986年生,硕士研究生,工程师,研究方向为材料微观组织及性能演变
引用本文:    
魏力民, 杨权, 程义, 谭舒平. Ni-25Cr-20Co合金时效组织结构及性能研究[J]. 《材料导报》期刊社, 2017, 31(16): 107-111.
WEI Limin, YANG Quan, CHENG Yi, TAN Shuping. Microstructure and Properties of Ni-25Cr-20Co Alloy After Long-term Aging. Materials Reports, 2017, 31(16): 107-111.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.022  或          https://www.mater-rep.com/CN/Y2017/V31/I16/107
1 Maile K. Use of advanced alloy 617 mod for critical components of the future 700 ℃ coal fired power plant[C]//2009 Symposium on Advanced Power Plant Heat Resistant Steels and Alloys. Shanghai: The Materials Institution, Chinese Society of Power Engineering,2009:1.
2 周兰章. 700 ℃超超临界机组耐热材料的研制现状及选材思考[C]//国家700 ℃计划耐热材料第一次专题研讨会.北京: 国家700℃超超临界燃煤发电技术创新联盟秘书处,2011:13.
3 Zhu B T,Zhou R C.Problems paid attention to raise the ultrasupercritical units steam parameters [J]. Proceedings of the CSEE,2009,29(S):95(in Chinese).
朱宝田,周荣灿.进一步提高超超临界机组蒸汽参数应注意的问题[J].中国电机工程学报,2009,29(S):95.
4 Zhang H J, Zhou R C, Hou S F, et al. Microstructure stability of candidate material alloy263 for advanced USC unit [J]. J Chinese Soc Power Eng,2011(12):969(in Chinese).
张红军,周荣灿,侯淑芳,等. 先进超超临界机组用候选材料Alloy263的组织稳定性[J]. 动力工程学报,2011(12):969.
5 Xiao X, Zhao H Q, Wang C S, et al. Effects of B and P on microstructure and mechanical properties of GH984 alloy [J]. Acta Metall Sin,2013,29(4):421(in Chinese).
肖旋,赵海强,王常帅,等. B和P对GH984合金组织和力学性能的影响[J]. 金属学报,2013,29(4):421.
6 Shi Y Y, Jiao S Y, Dong J X, et al. Classical precipitation dynamic model of γ′ phase of nickel-based super alloys and applications [J]. Acta Metall Sin,2012(6):661(in Chinese).
石宇野,焦少阳,董建新,等. 镍基高温合金γ′相析出的经典动态模型及应用[J]. 金属学报,2012(6):661.
7 Tan M L, et al. Influence of Ti/Al ratios on γ′ coarsening behavior and tensile properties of GH984G alloy during long-term thermal exposure [J]. Acta Metall Sin,2014(10):1260(in Chinese).
谭梅林,等. Ti/Al比对GH984G合金长期时效过程中γ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报,2014(10):1260.
8 Grosdidier T, Hazotte A, Simon A. Precipitation and dissolution processes in γ/γ′ single crystal nickel-based superalloys[J]. Mater Sci Eng A,1998,256(1):183.
9 MacKay R A, Nathal M V. γ′ coarsening in high volume fraction nickel-base alloys [J]. Acta Metall Mater,1990,38(6):S93.
10 Kim H T, Chun S S, Yao X X, et al. Gamma prime (γ′) precipita-ting and ageing behaviours in two newly developed nickel-base super alloys [J]. J Mater Sci,1997,32(18):4917.
11 Zhang H J, Zhou R C, Hou S F, et al. Study on microstructure stability of Inconel 740 for advanced ultra supercritical unit [J]. Proceedings of the CSEE,2011,31(8):108(in Chinese).
张红军,周荣灿,侯淑芳,等. 先进超超临界机组用 Inconel 740 合金的组织稳定性研究[J]. 中国电机工程学报,2011,31(8):108.
12 Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J Phys Chem Solids,1961,19(1-2):35.
13 Wagner C. See, for instance, the following references: Z [J]. Elektrochem,1961,65:581.
14 Sparke B, James D W, Leak G M. Lattice diffusion in gamma-iron [J]. J Iron Steel Institute,1965,203:152.
15 Barford J. Physical properties of martensite and bainite[J]. Iron Steel Inst J,1966,204(4):392.
16 Minamino Y, Jung S B, et al. Diffusion of cobalt, chromium, and titanium in Ni3Al [J]. Metall Trans A,1992,23(10):2783.
17 Gomez-Acebo T, Navarcorena B, Castro F. Inter diffusion in multiphase, Al-Co-Cr-Ni-Ti diffusion couples [J]. J Phase Equilibria Diffusion,2004,25(3):237.
18 Brown L M, Ham R K. Strengthening methods in crystals[M].London: Applied Science,1971:9
19 Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel base superalloy single crystals [J]. Acta Metall Mater,1992,40(1):1.
20 Schwarz R B, Labusch R. Dynamic simulation of solution hardening [J]. J Appl Phys,1978,49(10):5174.
21 赵双群, 谢锡善, 董建新. 700 ℃超超临界燃煤电站用镍基高温合金Inconel740/740H的组织与性能[C]//第九届电站金属材料学术年会. 成都,2011:278.
22 Shewfelt R S W, Brown L M. High-temperature strength of dispersion-hardened single crystals Ⅱ. Theory [J]. Philosophical Magazine,1977,35(4):945.
[1] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[2] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[3] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[4] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[5] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[6] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[7] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[8] 王杰, 黄海亮, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 23020100-9.
[9] 王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
[10] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[11] 罗圆, 王献, 赵君, 胡昌义, 张大伟, 魏燕, 张诩翔, 蔡宏中. Pt-Co-Mn合金组织结构及性能研究[J]. 材料导报, 2023, 37(10): 21060215-5.
[12] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[13] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[14] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[15] 王晓昱, 贾建刚, 刘第强, 巨佳康, 柴昌盛, 季根顺. 基于Si-CaO/Al2O3-Si三明治结构的碳/碳复合材料高强度扩散连接[J]. 材料导报, 2022, 36(13): 21040028-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed