Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22040403-8    https://doi.org/10.11896/cldb.22040403
  金属与金属基复合材料 |
B92SiQL钢的高温流变行为及变形机制研究
王庆娟*, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江
西安建筑科技大学冶金工程学院,西安 710055
Study on High-temperature Flow Behavior and Deformation Mechanism of B92SiQL Steel
WANG Qingjuan*, DANG Xue, DU Zhongze, WANG Qinren, HE Zeen, QI Zejiang
School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 39003KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 B92SiQL钢因高强度及抗扭转能力在预应力镀锌钢丝领域备受青睐,但热加工参数对其变形行为及性能产生重要影响。本研究对B92SiQL钢进行了变形温度为1 173~1 373 K、应变速率为0.1~20 s-1的热压缩实验,并基于Zener-Hollomon参数和线性拟合,建立了应变补偿型Arrhenius本构模型。结果表明,流变应力随变形温度的升高或应变速率的降低呈减小趋势,B92SiQL钢的热变形激活能(Q)约为305.865 kJ/mol。该模型得到流变应力预测值与实验值的线性相关系数(R)约为0.994,平均绝对相对误差(AARE)约为2.800%。在较低变形温度下,微观组织中依然存在被拉长的原始晶粒;在1 373 K- 0.1 s-1热变形条件下,B92SiQL钢几乎发生了完全的动态再结晶(DRX),晶粒产生明显粗化;应变速率增大至10 s-1时,晶粒尺寸明显减小。根据加工硬化率与流变应力曲线确定了B92SiQL钢发生DRX的临界应力和应变,得到临界条件与Z参数呈指数关系。根据传统的Avrami方程建立了B92SiQL钢的DRX动力学模型,对预测结果与实验数据进行了比较,结果表明该模型具有较高的预测精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王庆娟
党雪
杜忠泽
王钦仁
何泽恩
齐泽江
关键词:  B92SiQL钢  流变行为  本构模型  变形机制  动力学模型    
Abstract: B92SiQL steel is favored by prestressed galvanized steel wire for its high strength and torsional resistance, and the thermal processing para-meters have an important impact on its deformation behavior and properties. In this study, the thermal compression experiments of B92SiQL steel were conducted over the range of deformation temperatures from 1 173 to 1 373 K and strain rates from 0.1 to 20 s-1. The strain-compensated Arrhenius constitutive model was established based on the Zener-Hollomon parameter and linear fitting. The results showed that the flow stress decreased with increasing deformation temperature or decreasing strain rate. The thermal deformation activation energy (Q) of B92SiQL steel is about 305.865 kJ/mol. The linear correlation coefficient (R) between the predicted values and experimental values of flow stress obtained from this model is about 0.994, and the average absolute relative error (AARE) is about 2.800%. At lower deformation temperatures, the elongated primary grains were still present in the microstructure. At the thermal deformation condition of 1 373 K—0.1 s-1, nearly complete dynamic recrystallization (DRX) occurred and the grains produced significant coarsening. The grain size was significantly refined when the strain rate increased to 10 s-1. The critical stress and strain for the occurrence of DRX were determined from the curve of work-hardening rate and flow stress, and the critical condition was obtained to be exponentially related to the Z parameter. The DRX kinetic model of B92SiQL steel was deve-loped based on the conventional Avrami equation, and the predicted results were compared with the experimental data, which indicated that the model had high prediction accuracy.
Key words:  B92SiQL steel    flow behavior    constitutive model    deformation mechanism    kinetic model
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TG142  
基金资助: 国家自然科学基金(52174371);陕西省科技厅企业联合基金(2021JLM-33)
通讯作者:  *王庆娟,西安建筑科技大学冶金工程学院教授、博士研究生导师。2000年于西安建筑科技大学材料加工专业获工学硕士学位,2009年于西安交通大学材料科学与工程专业获工学博士学位,主要从事高性能金属材料研发及合金强韧化机理研究。发表学术论文80余篇,其中SCI、EI检索40余篇,获国家发明专利8项,出版教材6部。获中国有色金属工业科学技术一等奖一项。jiandawqj@163.com   
引用本文:    
王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
WANG Qingjuan, DANG Xue, DU Zhongze, WANG Qinren, HE Zeen, QI Zejiang. Study on High-temperature Flow Behavior and Deformation Mechanism of B92SiQL Steel. Materials Reports, 2023, 37(21): 22040403-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040403  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22040403
1 Zhang Z L, Wang L F, Luo G Q, et al. Modern Transportation and Metallurgical Materials, 2021, 1(5), 6 (in Chinese).
张泽灵, 王林烽, 罗国强, 等. 现代交通与冶金材料, 2021, 1(5), 6.
2 Wang L, Ma H, Li P, et al. Journal of Iron and Steel Research, 2014, 26(6), 54 (in Chinese).
王雷, 麻晗, 李平, 等. 钢铁研究学报, 2014, 26(6), 54.
3 Zhang L, Sun J L, Zhang F, et al. Journal of Plasticity Engineering, 2016, 23(5), 103 (in Chinese).
张磊, 孙建林, 张芳, 等. 塑性工程学报, 2016, 23(5), 103.
4 Sun Z W, Chen H Y, Zhang J F, et al. China Metallurgy, 2019, 29(1), 66 (in Chinese).
孙中伟, 陈海燕, 张剑锋, 等. 中国冶金, 2019, 29(1), 66.
5 Luo R, Cao Y, Qiu Y, et al. Chinese Journal of Rare Metals, 2022, 46(2), 144 (in Chinese).
罗锐, 曹赟, 邱宇, 等. 稀有金属, 2022, 46(2), 144.
6 Wang Q J, Wang Q R, Du Z Z, et al. Iron and Steel, 2021, 56(11), 112 (in Chinese).
王庆娟, 王钦仁, 杜忠泽, 等. 钢铁, 2021, 56(11), 112.
7 Li H Y, Li Y H, Wang X F, et al. Materials & Design, 2013, 49, 493.
8 Zhao H T, Qi J J, Su R, et al. Journal of Materials Research and Technology, 2020, 9(3), 2856.
9 Zhang W, Yan Z J, Wang R, et al. Journal of Mechanical Engineering, 2020, 56(12), 116 (in Chinese).
张伟, 闫志杰, 王睿, 等. 机械工程学报, 2020, 56(12), 116.
10 Wu C, Han S. Acta Metallurgica Sinica, 2018, 31(9), 963.
11 Wang X H, Liu Z B, Liang J X, et al. Journal of Iron and Steel Research, 2021, 33(7), 627 (in Chinese).
王晓辉, 刘振宝, 梁剑雄, 等. 钢铁研究学报, 2021, 33(7), 627.
12 Li C M, Huang L, Zhao M J, et al. Materials Science & Engineering:A, 2021, 814, 141231.
13 Saadatkia S, Mirzadeh H, Cabrera J M. Materials Science & Engineering:A, 2015, 636, 196.
14 Ji H C, Duan H L, Li Y G, et al. Journal of Materials Research and Technology, 2020, 9(4), 7210.
15 Jia C H, Liu C X, Liu Y C, et al. Journal of Iron and Steel Research, 2019, 26(11), 1228.
16 Wang W T, Guo X Z, Huang B, et al. Materials Science & Engineering:A, 2014, 599, 134.
17 Qiao L, Deng Y, Liao M Q, et al. Materials Today Communications, 2020, 25, 101134.
18 Wang J, Wang X G, Xiao H, et al. Journal of Iron Steel Research, 2013, 25(7), 27 (in Chinese).
王健, 王小巩, 肖宏. 钢铁研究学报, 2013, 25(7), 27.
19 Zhang Y S, Wu G L, Wu S W, et al. Materials Reports, 2018, 32(11), 3900 (in Chinese).
张永集, 吴光亮, 武尚文, 等. 材料导报, 2018, 32(11), 3900.
20 Sun Y, Zhou C, Wan Z P, et al. Materials Reports, 2017, 31(7), 12 (in Chinese).
孙宇, 周琛, 万志鹏, 等. 材料导报, 2017, 31(7), 12.
21 Poliak E I, Jonas J J. Acta Materialia, 1996, 44(1), 127.
22 Luo R, Chen L L, Zhang Y X, et al. Journal of Alloys and Compounds, 2021, 865, 158601.
23 Gong Q J, Liang Y L, Yang M, et al. Iron and Steel, 2017, 52(6), 67 (in Chinese).
龚乾江, 梁益龙, 杨明, 等. 钢铁, 2017, 52(6), 67.
24 Wang M J, Sun C Y, Fu M W, et al. Materials Science & Engineering:A, 2020, 793, 139939.
25 Zhou Y, Feng X N, Bi Z Y, et al. Materials Reports, 2019, 31(1), 428 (in Chinese).
周勇, 冯雪楠, 毕宗岳, 等. 材料导报, 2019, 33(1), 428.
26 Liu Q, Fang L M, Xiong Z W, et al. Materials Science & Engineering:A, 2021, 822, 141704.
27 Zhang J J, Yi Y P, He H L, et al. Materials Characterization, 2021, 181, 111492.
28 Jiang H, Dong J X, Zhang M C, et al. Journal of Alloys and Compounds, 2018, 735, 1520.
29 Liu D H, Chai H R, Yang L, et al. Journal of Alloys and Compounds, 2021, 895, 162565.
[1] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[2] 邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
[3] 潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
[4] 刘嘉琴, 王晓方, 刘柯钊. 铁氮化工艺、氮化铁的性质及氧化行为的研究现状与展望[J]. 材料导报, 2023, 37(14): 21100038-16.
[5] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[6] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[7] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[8] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[9] 张琪, 冯攀, 王浩川, 邵丽静, 叶少雄, 冉千平. 混凝土中微波型主动控释胶囊的制备及释放行为[J]. 材料导报, 2022, 36(4): 20100262-7.
[10] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[11] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[12] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[13] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[14] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[15] 杨家坤, 包翔云, 张金钰, 刘刚, 孙军. 亚稳β钛合金的设计方法及室温变形机制的研究进展[J]. 材料导报, 2021, 35(19): 19170-19180.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed