Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 103-106    https://doi.org/10.11896/j.issn.1005-023X.2017.016.021
  材料研究 |
析出相对Mg-Gd-Y-Nd-Zr合金室温压缩行为的影响*
唐昌平1,2, 李国栋3, 刘文辉1,2, 陈宇强1,2, 刘筱1,2, 李方伟1,2
1 湖南科技大学材料科学与工程学院, 湘潭 411201;
2 高温耐磨材料及制备技术湖南省国防科技重点实验室, 湘潭 411201;
3 苏州热工研究院有限公司设备管理部, 深圳 518124
Effects of Precipitates on Compression Behavior of Mg-Gd-Y-Nd-Zr Alloy at Ambient Temperature
TANG Changping1,2, LI Guodong3, LIU Wenhui1,2, CHEN Yuqiang1,2, LIU Xiao1,2, LI Fangwei1,2
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201;
2 High Temperature Wear Resistant Materials and Preparation Technology of Hunan Province National Defence Science and Technology Laboratory, Xiangtan 411201;
3 Equipment Management Department, Suzhou Nuclear Power Research Institute Company Limited, Shenzhen 518124
下载:  全 文 ( PDF ) ( 2070KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用金相观察、硬度测试、扫描电镜观察、透射电镜观察及室温压缩等手段,研究了时效析出相对Mg-5.5Gd-3.0Y-1.0Nd-1.0Zr合金挤压棒材室温压缩性能的影响。结果表明:该合金具有优异的抗压性能,经225 ℃/12 h时效处理后,合金的抗压强度可达490 MPa,屈服强度可达325 MPa,总压缩应变为8.9%,优异的抗压强度主要归因于合金中与基体呈半共格关系的析出相β′;随着时效程度的进一步增加,合金进入过时效状态,在300 ℃下时效8 h后,合金中析出尺寸达微米级的平衡相β,并在晶界处形成宽度约2 μm的无沉淀析出带,使合金的强化效果减弱;断口分析表明,不同时效状态合金均以解理断裂为主,并在解理面之间以少量韧窝进行连接。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐昌平
李国栋
刘文辉
陈宇强
刘筱
李方伟
关键词:  Mg-Gd-Y-Nd-Zr合金  时效  析出相  室温压缩  断口分析    
Abstract: Effects of precipitates on compression behavior of Mg-5.5Gd-3.0Y-1.0Nd-1.0Zr at ambient temperature were investigated by optical microscopy (OM), hardness testing, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ambient temperature compression test. The results indicated that the compression property of the alloy was very excellent. After 225 ℃/12 h treated, the compressive strength of the alloy could achieve 490 MPa, the yield strength could achieve 325 MPa, and the total compressive strain could reach 8.9%. The excellent compressive strength was attributed to the β′ precipitate, which was semi-coherent with the magnesium matrix. The alloy became overage as the aging time prolonged. The micrometer scaled equilibrium β phase precipitated from the matrix after aged at 300 ℃ for 8 h. The precipitate free zone with width of about 2 μm was formed at the grain boundary, which weakened the strengthening effect. The fracture analysis indicated that cleavage fracture was the main fracture mode, and the cleavage planes were connected by a small amount of dimples.
Key words:  Mg-Gd-Y-Nd-Zr alloy    aging    precipitate    ambient temperature compression    fracture analysis
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG146.2+2  
基金资助: 湖南省自然科学基金(2016JJ5042)
作者简介:  唐昌平:男,1983年生,博士,讲师,主要研究方向为镁合金强韧化 E-mail:tcpswnu@163.com
引用本文:    
唐昌平, 李国栋, 刘文辉, 陈宇强, 刘筱, 李方伟. 析出相对Mg-Gd-Y-Nd-Zr合金室温压缩行为的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 103-106.
TANG Changping, LI Guodong, LIU Wenhui, CHEN Yuqiang, LIU Xiao, LI Fangwei. Effects of Precipitates on Compression Behavior of Mg-Gd-Y-Nd-Zr Alloy at Ambient Temperature. Materials Reports, 2017, 31(16): 103-106.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.021  或          https://www.mater-rep.com/CN/Y2017/V31/I16/103
1 Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater Sci Eng A,2001,302(1):37.
2 Friedrich H E, Mordike B L. Magnesium technology: Metallurgy, design data, applications[M]. Berlin: Springer,2006.
3 Czerwinski F, Trojanova Z, Szaraz Z, et al. Magnesium alloys-design, processing and properties[M]. Rijeka, Croatia: InTech,2011.
4 Zhang L T, Zhang X B, Cui X P. Research progress on high tempe-rature creep resistance of rare earth magnesium alloy[J]. Mater Rev: Rev,2014,28(10):91(in Chinese).
张李铁, 张效宾, 崔晓鹏. 稀土镁合金抗高温蠕变性能的研究进展[J]. 材料导报: 综述篇,2014,28(10):91
5 Liu B Z, Fan Y P, Liu J J, et al. Research and development of heat resistant magnesium-heavy rare earth alloys[J]. Mater Rev: Rev,2012,26(6):110(in Chinese).
刘宝忠, 范燕平, 刘娇娇, 等. 重稀土耐热镁合金的研究现状及发展[J]. 材料导报: 综述篇,2012,26(6):110.
6 Rokhlin L L. Magnesium alloys containing rare earth metals: Structure and properties[M]. London: Taylor & Francis,2003.
7 He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250℃[J]. J Alloys Compd,2006,421(1-2):309.
8 Gao X, He S M, Zeng X Q, et al. Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250℃[J]. Mater Sci Eng A,2006,431(1-2):322.
9 Zhang X M, Tang C P, Deng Y L, et al. Phase transformation in Mg-8Gd-4Y-Nd-Zr alloy[J]. J Alloys Compd,2011,509(21):6170.
10 Zheng J X, Xu X S, Zhang K Y, et al. Novel structures observed in Mg-Gd-Y-Zr during isothermal ageing by atomic-scale HAADF-STEM[J]. Mater Lett,2015,152:287.
11 Zheng J X, Li Z, Tan L D, et al. Precipitation in Mg-Gd-Y-Zr alloy: Atomic-scale insights into structures and transformations[J]. Mater Charact,2016,117:76.
12 Zheng K Y, Dong J, Zeng X Q, et al. Precipitation and its effect on the mechanical properties of a cast Mg-Gd-Nd-Zr alloy[J]. Mater Sci Eng A,2008,489(1-2):44.
13 Zheng K Y, Dong J, Zeng X Q, et al. Effect of precipitation aging on the fracture behavior of Mg-11Gd-2Nd-0.4Zr cast alloy[J]. Mater Charact,2008,59(7):857.
14 Zhang Y, Wu Y J, Peng L M, et al. Microstructure evolution and mechanical properties of an ultra-high strength casting Mg-15.6Gd-1.8Ag-0.4Zr alloy[J]. J Alloys Compd,2014,615:703.
15 Zhang L, Gong M, Peng L M. Microstructure and strengthening mechanism of a thermomechanically treated Mg-10Gd-3Y-1Sn-0.5Zr alloy[J]. Mater Sci Eng A,2013,565:262.
16 Wen K, Liu K, Wang Z H, et al. Effect of microstructure evolution on mechanical property of extruded Mg-12Gd-2Er-1Zn-0.6Zr alloys[J]. J Magn Alloy,2015,3(1):23.
17 Li L, Zhang X. Hot compression deformation behavior and proces-sing parameters of a cast Mg-Gd-Y-Zr alloy[J]. Mater Sci Eng A,2011,528(3):1396.
18 Xia X S, et al. Characterization of hot deformation behavior of as-extruded Mg-Gd-Y-Zn-Zr alloy[J]. J Alloys Compd,2014,610:203.
19 Xiao H C, Jiang S N, Tang B, et al. Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Y-Zr alloy[J]. Mater Sci Eng A,2015,628:311.
20 Xia X S, Chen Q, Zhang K, et al. Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy[J]. Mater Sci Eng A,2013,587:283.
21 Xiao H C, Tang B, et al. Dynamic precipitation in a Mg-Gd-Y-Zr alloy during hot compression[J]. Mater Sci Eng A,2015,645:241.
22 Tang C P, Liu W H, Chen Y Q, et al. Effects of thermal treatment on microstructure and mechanical properties of a Mg-Gd-based alloy plate[J]. Mater Sci Eng A,2016,659:63.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[3] 吕润涛, 周张健, 白冰, 杨文. 耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展[J]. 材料导报, 2024, 38(4): 22120065-7.
[4] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[5] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[6] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[7] 杨劼, 任慧平, 王海燕, 高雪云, 刘宗昌. 贝氏体钢时效处理富Cu团簇析出特点及其第一性原理计算[J]. 材料导报, 2024, 38(14): 23030267-7.
[8] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[9] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[10] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[11] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[12] 殷晓龙, 王志林, 王婉, 于贺春, 王汉斌, 闫文杰. 深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究[J]. 材料导报, 2023, 37(22): 22070192-6.
[13] 曹宇, 白朴存, 刘飞, 侯小虎. 选区激光熔化IN718合金固溶过程成分均匀化规律的研究[J]. 材料导报, 2023, 37(21): 22040096-7.
[14] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[15] 刘灵, 杨伟, 吴宗锴, 徐勇, 余欢. 深冷处理对快冷Mg-6Al-1Y合金等温时效析出的影响[J]. 材料导报, 2023, 37(12): 21070188-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed