Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 82-87    https://doi.org/10.11896/j.issn.1005-023X.2017.08.017
  材料研究 |
钛对非调质塑料模具钢奥氏体晶粒长大规律的影响*
郑亚风1,2,3, 李晓成1,2,3, 吴日铭1,2,3, 吴晓春1,2,3
1 省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072;
2 上海市钢铁冶金新技术开发应用重点实验室,上海 200072;
3 上海大学材料科学与工程学院, 上海 200072
Influence of Ti on Grain Growth Behavior of Non-quenched and Tempered Plastic Mold Steel
ZHENG Yafeng1,2,3, LI Xiaocheng1,2,3, WU Riming1,2,3, WU Xiaochun1,2,3
1 State Key Laboratory of Advanced Special Steel Shanghai University, Shanghai 200072;
2 Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072;
3 School of Materials Science and Engineering, Shanghai University, Shanghai 200072
下载:  全 文 ( PDF ) ( 1919KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 汽车和家电行业对高品质大截面塑料模具钢的需求量逐渐增大,但随着塑料模具钢截面厚度的增大,其出现粗晶的可能性也增大,这使得合理的热处理工艺设计显得尤为重要。通过添加钛来抑制高温处理过程中奥氏体晶粒的长大行为,并着重研究微合金钛元素对非调质塑料模具钢奥氏体晶粒长大的影响规律。研究发现,含0.03%钛的非调质塑料模具钢在均质化温度高于1 050 ℃时具有较好的抗晶粒粗化能力,原因是组织中晶界附近存在一定量的以Ti(C,N)为主的析出相。通过以上研究建立了奥氏体晶粒长大模型,该模型可有效预测非调质塑料模具钢高温均质化过程中的奥氏体晶粒长大规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑亚风
李晓成
吴日铭
吴晓春
关键词:  微合金化  非调质钢  奥氏体化  析出相    
Abstract: The demand of automotive and appliance industry for high-quality large section plastic mold steel is gradually increased. However, with the increase of the thickness of plastic mold steel, the possibility of the occurrence of coarse grain is also increased, which calls for a reasonable design of heat treatment process. The austenite grain growth behavior during high temperature treatment was hindered by adding titanium, and the effects of Ti addition on austenite grain growth behavior of non-quenched and tempered (NQT) plastic mold steel were emphatically studied. The results show that the NQT plastic mold steel containing 0.03% Ti has better resistance to grain coarsening when the homogenization temperature is higher than 1 050 ℃, due to the Ti(C, N) precipitation disperse around the grain boundaries. Based on the experimental results, the mathematical models of grain growth were established, which can be used to predict the austenite grain growth of NQT plastic mold steel during high temperature homogenization.
Key words:  micro-alloying    non-quenched and tempered steel    austenization    precipitation
               出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51171104)
通讯作者:  吴晓春:男,1961年生,教授,博士研究生导师,主要从事先进模具材料及表面处理研究 E-mail:wuxiaochun@t.shu.edu.cn   
作者简介:  郑亚风:男,1990年生,硕士研究生,主要从事塑料模具钢的组织与性能研究 E-mail:zyf984255143@163.com
引用本文:    
郑亚风, 李晓成, 吴日铭, 吴晓春. 钛对非调质塑料模具钢奥氏体晶粒长大规律的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 82-87.
ZHENG Yafeng, LI Xiaocheng, WU Riming, WU Xiaochun. Influence of Ti on Grain Growth Behavior of Non-quenched and Tempered Plastic Mold Steel. Materials Reports, 2017, 31(8): 82-87.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.017  或          http://www.mater-rep.com/CN/Y2017/V31/I8/82
1 Duan L L, Zhang Z, Li X C, et al. Transformation process and kinetics in a new plastic mould of bainite steel SDP2[J]. Trans Mater Heat Treatment,2015,36(8):174(in Chinese).
段丽丽, 张铮, 李晓成, 等. SDP2新型贝氏体模具钢的相变及动力学[J]. 材料热处理学报,2015,36(8):174.
2 Wu R M, Zheng Y F, Wu X C, et al. Effect of titanium on the microstructure and hardness uniformity of non-quenched and tempered pre-hardened steel for large-section plastic mould[J]. Ironmaking Steelmaking,2017,44(1):17.
3 Zhang Z, Wu X C, Zhou Q, et al. Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds[J]. Int J Mine Metal Mater,2015,22(8):842.
4 Wu X C, Cui K. Effect of V, Ti on the microstructures and mecha-nical properties of unquenched and un-tempered die steel for plastic mold[J]. Mater Mech Eng,1997,21(6):16(in Chinese).
吴晓春, 崔崑.钒、钛对非调质塑料模具钢组织与性能的影响[J]. 机械工程材料,1997,21(6):16.
5 Wu X C, Cui K. Preciptated phase in unquenched and un-tempered die steel for plastic mould[J]. Iron Steel,1998,33(6):50(in Chinese).
吴晓春, 崔崑. 非调质塑料模具钢中析出相的研究[J]. 钢铁,1998,33(6):50.
6 Luo Y, Wu X C, Wang H B, et al. Study on microstructure and hardness uniformity of non-quenched prehardened steel for large section plastic mould[J]. Mater Sci Eng A,2008,492:205.
7 Luo Y, Wu X C, Wang H B, et al. A comparative study on non-quenched and quenched prehardened steel for large section plastic mould[J]. J Mater Process Technol,2009,209:5437.
8 Luo Y, Peng J M, Wang H B, et al. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel[J]. Mater Sci Eng A,2010,527:3433.
9 Zhang Z, Wu X C, Li N, et al. Alloy optimisation of bainitic steel for large plastic mould[J]. Mater Sci Technol,2015,31(14):1706.
10 Ma H, Liao S L. Effect of Ti on austenite grain growth behavior in high carbon steels[J]. J Iron Steel Res Int,2014,21(7):702.
11 Gomez M, Rancel L, Escudero E, et al. Phase transformation under continuous cooling conditions in medium carbon micro-alloyed steels[J]. J Mater Sci Technol,2014,30(5):511.
12 Gu Y, Tian P, Wang X, et al. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process[J]. Mater Des,2016,89:589.
13 Olasolo M, Uranga P, Rodriguez-Ibabe J M, et al. Effect of auste-nite microstructure and cooling rate on transformation characteristics in a low carbon Nb-V micro-alloyed steel[J]. Mater Sci Eng A,2011,528:2559.
14 Pous-Romero H, Lonardelli I, et al. Austenite grain growth in a nuclear pressure vessel steel[J]. Mater Sci Eng A,2013,567:72.
15 Fu L M, Shan A D, Wang W. Effect of Nb solute drag and NbC precipitate pinning on the recrystallization grain growth in low carbon Nb-micro-alloyed steel[J]. Acta Metall Sinica,2010,46(7):832(in Chinese).
付立铭, 单爱党, 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报,2010,46(7):832.
16 Geng W, Sun X J, Yong Q L, et al. Austenite grain refinement and isothermal growth behavior in a low carbon vanadium micro-alloyed steel[J]. J Iron Steel Res Int,2014,21(8):757.
17 Sha Q Y, Sun Z Q. Grain growth behavior of coarse-grained auste-nite in a Nb-V-Ti micro-alloyed steel[J]. Mater Sci Eng A,2009,523(1-2):77.
18 Duan L N, Wang L M, Liu Q Y, et al. Austenite grain growth behavior of X80 pipeline steel in heating process[J]. J Iron Steel Res Int,2010,17(3):62.
19 Sun L F, Wang F M, Tao S F, et al. Austenite grain growth beha-vior of locomotive wheel steel[J]. J University of Science and Technology Beijing,2014,36(3):301(in Chinese).
孙乐飞, 王福明, 陶素芬, 等. 机车车轮用钢奥氏体晶粒的长大行为[J]. 北京科技大学学报,2014,36(3):301.
20 Li W, Chen W L, Wu Y, et al. Austenite grain growth of 42CrMo steel during heating[J]. Trans Mater Heat Treatment,2015,36(1):104(in Chinese).
李伟, 陈文琳, 吴跃, 等. 42CrMo钢加热时奥氏体晶粒长大演化规律[J]. 材料热处理学报,2015,36(1):104.
21 Zhang S S, Li M Q, Liu Y G, et al. The growth behavior of auste-nite grain in the heating process of 300M steel[J]. Mater Sci Eng A,2011,528:4967.
22 Shi Z R, Yang C F, Wang R Z, et al. Effect of nitrogen on the microstructures and mechanical properties in simulated CGHAZ of vanadium micro-alloyed steel varied with different heat inputs[J]. Mater Sci Eng A,2016,649:270.
23 Zhang L, Kannengiesser T. Austenite grain growth and microstructure control in simulated heat affected zones of micro-alloyed HSLA steel[J]. Mater Sci Eng A,2014,613:326.
24 Moon J, Lee C. Pinning efficiency of austenite grain boundary by a cubic shaped TiN particle in hot rolled HSLA steel[J]. Mater Cha-ract,2013,73:31.
25 Herbst S, Besserer H B B. Holistic consideration of grain growth behavior of tempering steel 34CrNiMo6 during heating processes[J]. J Mater Process Technol,2016,229:61.
26 Li J R, Song M Q, Gong C, et al. Grain growth behavior of blade steel KT5331 for ultra-super critical units[J]. Chinese J Eng,2015,37(12):1570(in Chinese).
李俊儒, 宋明强, 龚臣, 等. 超超临界机组叶片钢KT5331晶粒长大行为[J]. 工程科学学报,2015,37(12):1570.
[1] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[2] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[3] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[4] 薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
[5] 樊江磊, 刘占云, 李育文, 吴深, 王霄, 刘建秀. Sn-Cu系无铅钎料微合金化研究进展[J]. 材料导报, 2018, 32(21): 3774-3779.
[6] 张朝磊, 魏旸, 方文, 苗红生, 王青海. 非调质钢36MnVS4汽车发动机连杆胀断缺陷分析[J]. 《材料导报》期刊社, 2018, 32(14): 2458-2461.
[7] 贾志宏, 翁瑶瑶, 丁立鹏, 程韬, 刘莹莹, 刘庆. 铝合金中的Sn微合金化:强化作用及机制*[J]. CLDB, 2017, 31(9): 123-127.
[8] 袁新建, 李慈, 汪浩东, 梁雪波, 曾丁丁, 谢朝杰. 钒、铬微合金化对高碳钢微观组织与力学性能的影响[J]. 《材料导报》期刊社, 2017, 31(8): 76-81.
[9] 张朝磊, 刘雅政. 汽车胀断连杆用非调质钢的应用现状与发展*[J]. 《材料导报》期刊社, 2017, 31(5): 58-64.
[10] 何钦生,邹兴政,李方,李征,唐锐,赵安中,. 冷拉减面率对C形环用Inconel X-750丝材组织性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 100-106.
[11] 王晓璐, 赵玉涛, 焦雷, 钱炜, 王研. Zr+Er及Zr+Y对Al-Mg-Si-Cu-Mn-Cr合金组织和拉伸力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 72-76.
[12] 唐昌平, 李国栋, 刘文辉, 陈宇强, 刘筱, 李方伟. 析出相对Mg-Gd-Y-Nd-Zr合金室温压缩行为的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 103-106.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed