Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 82-87    https://doi.org/10.11896/j.issn.1005-023X.2017.08.017
  材料研究 |
钛对非调质塑料模具钢奥氏体晶粒长大规律的影响*
郑亚风1,2,3, 李晓成1,2,3, 吴日铭1,2,3, 吴晓春1,2,3
1 省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072;
2 上海市钢铁冶金新技术开发应用重点实验室,上海 200072;
3 上海大学材料科学与工程学院, 上海 200072
Influence of Ti on Grain Growth Behavior of Non-quenched and Tempered Plastic Mold Steel
ZHENG Yafeng1,2,3, LI Xiaocheng1,2,3, WU Riming1,2,3, WU Xiaochun1,2,3
1 State Key Laboratory of Advanced Special Steel Shanghai University, Shanghai 200072;
2 Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072;
3 School of Materials Science and Engineering, Shanghai University, Shanghai 200072
下载:  全 文 ( PDF ) ( 1919KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 汽车和家电行业对高品质大截面塑料模具钢的需求量逐渐增大,但随着塑料模具钢截面厚度的增大,其出现粗晶的可能性也增大,这使得合理的热处理工艺设计显得尤为重要。通过添加钛来抑制高温处理过程中奥氏体晶粒的长大行为,并着重研究微合金钛元素对非调质塑料模具钢奥氏体晶粒长大的影响规律。研究发现,含0.03%钛的非调质塑料模具钢在均质化温度高于1 050 ℃时具有较好的抗晶粒粗化能力,原因是组织中晶界附近存在一定量的以Ti(C,N)为主的析出相。通过以上研究建立了奥氏体晶粒长大模型,该模型可有效预测非调质塑料模具钢高温均质化过程中的奥氏体晶粒长大规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑亚风
李晓成
吴日铭
吴晓春
关键词:  微合金化  非调质钢  奥氏体化  析出相    
Abstract: The demand of automotive and appliance industry for high-quality large section plastic mold steel is gradually increased. However, with the increase of the thickness of plastic mold steel, the possibility of the occurrence of coarse grain is also increased, which calls for a reasonable design of heat treatment process. The austenite grain growth behavior during high temperature treatment was hindered by adding titanium, and the effects of Ti addition on austenite grain growth behavior of non-quenched and tempered (NQT) plastic mold steel were emphatically studied. The results show that the NQT plastic mold steel containing 0.03% Ti has better resistance to grain coarsening when the homogenization temperature is higher than 1 050 ℃, due to the Ti(C, N) precipitation disperse around the grain boundaries. Based on the experimental results, the mathematical models of grain growth were established, which can be used to predict the austenite grain growth of NQT plastic mold steel during high temperature homogenization.
Key words:  micro-alloying    non-quenched and tempered steel    austenization    precipitation
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51171104)
通讯作者:  吴晓春:男,1961年生,教授,博士研究生导师,主要从事先进模具材料及表面处理研究 E-mail:wuxiaochun@t.shu.edu.cn   
作者简介:  郑亚风:男,1990年生,硕士研究生,主要从事塑料模具钢的组织与性能研究 E-mail:zyf984255143@163.com
引用本文:    
郑亚风, 李晓成, 吴日铭, 吴晓春. 钛对非调质塑料模具钢奥氏体晶粒长大规律的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 82-87.
ZHENG Yafeng, LI Xiaocheng, WU Riming, WU Xiaochun. Influence of Ti on Grain Growth Behavior of Non-quenched and Tempered Plastic Mold Steel. Materials Reports, 2017, 31(8): 82-87.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.017  或          https://www.mater-rep.com/CN/Y2017/V31/I8/82
1 Duan L L, Zhang Z, Li X C, et al. Transformation process and kinetics in a new plastic mould of bainite steel SDP2[J]. Trans Mater Heat Treatment,2015,36(8):174(in Chinese).
段丽丽, 张铮, 李晓成, 等. SDP2新型贝氏体模具钢的相变及动力学[J]. 材料热处理学报,2015,36(8):174.
2 Wu R M, Zheng Y F, Wu X C, et al. Effect of titanium on the microstructure and hardness uniformity of non-quenched and tempered pre-hardened steel for large-section plastic mould[J]. Ironmaking Steelmaking,2017,44(1):17.
3 Zhang Z, Wu X C, Zhou Q, et al. Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds[J]. Int J Mine Metal Mater,2015,22(8):842.
4 Wu X C, Cui K. Effect of V, Ti on the microstructures and mecha-nical properties of unquenched and un-tempered die steel for plastic mold[J]. Mater Mech Eng,1997,21(6):16(in Chinese).
吴晓春, 崔崑.钒、钛对非调质塑料模具钢组织与性能的影响[J]. 机械工程材料,1997,21(6):16.
5 Wu X C, Cui K. Preciptated phase in unquenched and un-tempered die steel for plastic mould[J]. Iron Steel,1998,33(6):50(in Chinese).
吴晓春, 崔崑. 非调质塑料模具钢中析出相的研究[J]. 钢铁,1998,33(6):50.
6 Luo Y, Wu X C, Wang H B, et al. Study on microstructure and hardness uniformity of non-quenched prehardened steel for large section plastic mould[J]. Mater Sci Eng A,2008,492:205.
7 Luo Y, Wu X C, Wang H B, et al. A comparative study on non-quenched and quenched prehardened steel for large section plastic mould[J]. J Mater Process Technol,2009,209:5437.
8 Luo Y, Peng J M, Wang H B, et al. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel[J]. Mater Sci Eng A,2010,527:3433.
9 Zhang Z, Wu X C, Li N, et al. Alloy optimisation of bainitic steel for large plastic mould[J]. Mater Sci Technol,2015,31(14):1706.
10 Ma H, Liao S L. Effect of Ti on austenite grain growth behavior in high carbon steels[J]. J Iron Steel Res Int,2014,21(7):702.
11 Gomez M, Rancel L, Escudero E, et al. Phase transformation under continuous cooling conditions in medium carbon micro-alloyed steels[J]. J Mater Sci Technol,2014,30(5):511.
12 Gu Y, Tian P, Wang X, et al. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process[J]. Mater Des,2016,89:589.
13 Olasolo M, Uranga P, Rodriguez-Ibabe J M, et al. Effect of auste-nite microstructure and cooling rate on transformation characteristics in a low carbon Nb-V micro-alloyed steel[J]. Mater Sci Eng A,2011,528:2559.
14 Pous-Romero H, Lonardelli I, et al. Austenite grain growth in a nuclear pressure vessel steel[J]. Mater Sci Eng A,2013,567:72.
15 Fu L M, Shan A D, Wang W. Effect of Nb solute drag and NbC precipitate pinning on the recrystallization grain growth in low carbon Nb-micro-alloyed steel[J]. Acta Metall Sinica,2010,46(7):832(in Chinese).
付立铭, 单爱党, 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报,2010,46(7):832.
16 Geng W, Sun X J, Yong Q L, et al. Austenite grain refinement and isothermal growth behavior in a low carbon vanadium micro-alloyed steel[J]. J Iron Steel Res Int,2014,21(8):757.
17 Sha Q Y, Sun Z Q. Grain growth behavior of coarse-grained auste-nite in a Nb-V-Ti micro-alloyed steel[J]. Mater Sci Eng A,2009,523(1-2):77.
18 Duan L N, Wang L M, Liu Q Y, et al. Austenite grain growth behavior of X80 pipeline steel in heating process[J]. J Iron Steel Res Int,2010,17(3):62.
19 Sun L F, Wang F M, Tao S F, et al. Austenite grain growth beha-vior of locomotive wheel steel[J]. J University of Science and Technology Beijing,2014,36(3):301(in Chinese).
孙乐飞, 王福明, 陶素芬, 等. 机车车轮用钢奥氏体晶粒的长大行为[J]. 北京科技大学学报,2014,36(3):301.
20 Li W, Chen W L, Wu Y, et al. Austenite grain growth of 42CrMo steel during heating[J]. Trans Mater Heat Treatment,2015,36(1):104(in Chinese).
李伟, 陈文琳, 吴跃, 等. 42CrMo钢加热时奥氏体晶粒长大演化规律[J]. 材料热处理学报,2015,36(1):104.
21 Zhang S S, Li M Q, Liu Y G, et al. The growth behavior of auste-nite grain in the heating process of 300M steel[J]. Mater Sci Eng A,2011,528:4967.
22 Shi Z R, Yang C F, Wang R Z, et al. Effect of nitrogen on the microstructures and mechanical properties in simulated CGHAZ of vanadium micro-alloyed steel varied with different heat inputs[J]. Mater Sci Eng A,2016,649:270.
23 Zhang L, Kannengiesser T. Austenite grain growth and microstructure control in simulated heat affected zones of micro-alloyed HSLA steel[J]. Mater Sci Eng A,2014,613:326.
24 Moon J, Lee C. Pinning efficiency of austenite grain boundary by a cubic shaped TiN particle in hot rolled HSLA steel[J]. Mater Cha-ract,2013,73:31.
25 Herbst S, Besserer H B B. Holistic consideration of grain growth behavior of tempering steel 34CrNiMo6 during heating processes[J]. J Mater Process Technol,2016,229:61.
26 Li J R, Song M Q, Gong C, et al. Grain growth behavior of blade steel KT5331 for ultra-super critical units[J]. Chinese J Eng,2015,37(12):1570(in Chinese).
李俊儒, 宋明强, 龚臣, 等. 超超临界机组叶片钢KT5331晶粒长大行为[J]. 工程科学学报,2015,37(12):1570.
[1] 吕润涛, 周张健, 白冰, 杨文. 耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展[J]. 材料导报, 2024, 38(4): 22120065-7.
[2] 范航航, 刘飞, 郑亦玮, 白朴存, 崔晓明, 王海波, 靳亮. Li/Sc复合添加对铸态Al-Cu-Mg铝合金微观组织和硬度的影响规律[J]. 材料导报, 2024, 38(24): 23090211-7.
[3] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[4] 刘柱, 孙玉崇, 侯忠霖, 徐振, 吕哲, 陈庆强. Zr含量对5083铝合金铸轧板组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080148-6.
[5] 徐泽, 徐振, 吕哲, 宋华, 陈庆强. Y对6082铝合金铸轧板微观结构及性能的影响[J]. 材料导报, 2024, 38(15): 23080147-6.
[6] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[7] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[8] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[9] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[10] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[11] 曹宇, 白朴存, 刘飞, 侯小虎. 选区激光熔化IN718合金固溶过程成分均匀化规律的研究[J]. 材料导报, 2023, 37(21): 22040096-7.
[12] 李帅贞, 韩晓辉, 吴来军, 刘裕航, 王鹏, 宋晓国, 檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响[J]. 材料导报, 2022, 36(17): 21060094-5.
[13] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[14] 杨少朋, 尉文超, 胡芳忠, 王毛球, 汪开忠, 王自敏, 时捷. 低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J]. 材料导报, 2021, 35(8): 8179-8183.
[15] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed