Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 100-106    https://doi.org/10.11896/j.issn.1005-023X.2017.022.020
  材料研究 |
冷拉减面率对C形环用Inconel X-750丝材组织性能的影响*
何钦生1,2,邹兴政1,2,李方1,2,李征3,唐锐1,2,赵安中1,2
1 重庆材料研究院有限公司,重庆 400707;
2 国家仪表功能材料工程技术研究中心,重庆 400707;
3 宁波天生密封件有限公司,慈溪 315302
Effect of Cold Drawn Area Reduction on Microstructure and Properties of Inconel X-750 Wire Used for C Ring
HE Qinsheng1,2, ZOU Xingzheng1,2, LI Fang1,2, LI Zheng3, TANG Rui1,2, ZHAO Anzhong1,2
1 Chongqing Materials Research Institute Co.Ltd., Chongqing 400707;
2 National Instrument Functional Materials Engineering Technical Research Center, Chongqing 400707;
3 Ningbo Tiansheng Sealing Packing Co. Ltd., Cixi 315302
下载:  全 文 ( PDF ) ( 993KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 文章通过冷拉拔加工制备减面率为0%、30%、60%的Inconel X-750丝材,分别在650 ℃、730 ℃、810 ℃下时效处理16 h,研究冷拉减面率对X-750合金组织性能的影响,特别是减面率对γ'相形状、分布、数量及尺寸的影响。经定量分析,增大冷拉减面率除了有细化晶粒的作用外,还能一定程度地增加γ'相析出的颗粒数量及体积分数,减小γ'相尺寸,进一步加强沉淀强化的作用。时效温度对X-750丝材的晶粒尺寸没有明显影响,对γ'相的数量、尺寸及形状影响较大。采用730 ℃时效处理16 h的标准工艺制备的X-750丝材,经加工为弹簧后制造成金属C形密封环,其回弹量及泄漏率均满足要求,实验条件下密封性能良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何钦生
邹兴政
李方
李征
唐锐
赵安中
关键词:  高温合金  Inconel  X-750  冷拉拔减面率  C形密封环  γ'析出相    
Abstract: In order to study the effect of cold drawn area reduction ratio on microstructure and properties of Inconel X-750 alloy, especially the effect on the shape, distribution, quantity and size of γ' phase, the X-750 wires which had 0%, 30%, 60% cross section reduction rate (CSRR) were prepared and subsequently aging-treated at 650 ℃, 730 ℃, 810 ℃, respectively. With the quantitative analysis, aging temperature had little effect on grain size but great effect on the quantity, size and shape of γ' phase. Nevertheless, CSRR had significant influence on the grain size of X-750 wires, and it played a major role in fine grain strengthening. The quantity and volume fraction of γ' precipitate could be improved to some extent, and the size could be diminished by increasing CSRR, which resulted in enhancing further precipitation strengthening effect.The X-750 wires were aging-treated at 730 ℃ for 16 hours by standard process, then after being processed into springs, they were made into some C-rings finally. Under the given experimental conditions,it was proved that both the rebound amount and leakage rate met the requirements and the sealing performance was favorable.
Key words:  superalloy,Inconel X-750 alloy,cold drawn area reduction ratio,C-type sealing ring,γ' precipitate
发布日期:  2018-05-08
ZTFLH:  TB34  
  TG356.4  
  O657.99  
基金资助: *国家重点研发计划(2016YFB0402600);2015年工业转型升级强基工程(TC150B5C0120);国家科技支撑计划(2014BAE11B01);重庆市创新青年科技人才培养(cqtc2013kjrc-qnrc5004)
作者简介:  何钦生:男,1991年生,硕士,工程师,研究方向为金属功能材料及元器件E-mail:heqinsheng@cmri.cc
引用本文:    
何钦生,邹兴政,李方,李征,唐锐,赵安中,. 冷拉减面率对C形环用Inconel X-750丝材组织性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 100-106.
HE Qinsheng, ZOU Xingzheng, LI Fang, LI Zheng, TANG Rui, ZHAO Anzhong,. Effect of Cold Drawn Area Reduction on Microstructure and Properties of Inconel X-750 Wire Used for C Ring. Materials Reports, 2017, 31(22): 100-106.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.020  或          https://www.mater-rep.com/CN/Y2017/V31/I22/100
1 Heckl A, Neumeier S, Cenanovic S, et al. Reasons for the enhanced phase stability of Ru-containing nickel-based superalloys[J]. Acta Mater, 2011,59(17):6568.
2 Wang J, Zhou L, Sheng L, et al. The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure[J]. Mater Des, 2012,39(39):59.
3 Sims C T, Ha W C. The superalloys[M]. NY: John Wiley & Sons, 1972.
4 Yao D Z, Zeng Y P, Du H J, et al. Effect of thermal exposure on microstructure and mechanical properties of GH4145 alloy[J]. Trans Mater Heat Treat, 2015,36(11):37(in Chinese).
姚大志, 曾燕屏, 杜毫杰,等. 高温时效对GH4145合金显微组织与力学性能的影响[J]. 材料热处理学报, 2015,36(11):37.
5 Liu J, Cao J, Lin X, et al. Microstructure and mechanical properties of diffusion bonded single crystal to polycrystalline Ni-based superalloys joint[J]. Mater Des, 2013,49:622.
6 Zuo G, Hao S X, Yin X L. Research of “C”-ring for advanced pressurized water reacter[J]. Nucl Power Eng, 2002,23(2):108(in Chinese).
左国, 郝守信, 尹小龙. 先进压水堆“C”形环研究[J]. 核动力工程, 2002,23(2):108.
7 刘纯一,郑俊铭,黄伟峰. 对我国核电标准体系总体设计的几点看法[J]. 核标准计量与质量,2010(2):2.
8 Liao C J, Wang D L, Wang H R, et al. Features and applications of typical non-conventional type metal seals[J]. Cryogenics, 2014(4):56(in Chinese).
廖传军, 王道连, 王洪锐,等. 典型异型金属密封的特点及应用[J]. 低温工程, 2014(4):56.
9 Ma K, Cai R L,Lu X G, et al. Study on deformational characteristics of the C-ring for reaction pressure vessels[J]. Press Vessel Technol, 2016,33(1):17(in Chinese).
马凯, 蔡仁良, 励行根,等. 反应堆压力容器用 C 形密封环的变形特性研究[J]. 压力容器, 2016,33(1):17.
10 Jia X H, Chen H M, Li X G, et al. Analysis on the mechanical and sealing properties of metallic C ring[J]. Lubric Eng, 2014,39(11):4(in Chinese).
贾晓红, 陈华明, 励行根,等. 金属C形环力学性能及密封特性分析[J]. 润滑与密封, 2014,39(11): 4.
11 Souza G R X D, Gabriel S B, Dille J, et al. Work hardening and aging contribution on the mechanical properties of X-750 nickel-based superalloy[J]. Mater Sci Eng A, 2013,564(3):104.
12 Valle J A D, Picasso A C, Romero R. Work-hardening in Inconel X-750: Study of stageⅡ[J]. Acta Mater, 1998,46(6):1986.
13 Lothongkum G, Khuanlieng W, Homkrajai W, et al. Effect of pre-heat treatments on nano γ' precipitation and mechanical properties in wrought nickel base superalloy X-750[J]. Acta Mater, 2006,12:10.
14 Valle J A D, Picasso A C, Alvarez I, et al. Age-hardening behavior of Inconel X-750 superalloy[J]. Scr Mater, 1999,41(3):241.
15 Wang J J, Guo H, Zhou Y Z, et al. Effects of trace elements on properties of modified Inconel X-750 alloys[J]. Heat Treat Met, 1997(9):5(in Chinese).
王家军, 郭晖, 周亦胄, 等. 微量元素对InconelX-750改型合金性能的影响[J]. 金属热处理, 1997(9):5.
16 Ducki K J, Hetmańczyk M, Kuc D. Analysis of the precipitation process of the intermetallic phases in a high-temperature Fe-Ni austenitic alloy[J]. Mater Chem Phys, 2003,81(2):490.
17 Zhao S Q, Xie X S. Properties and microstructure after long-term aging at different temperatures for a new nickel base super alloy[J]. Acta Metall Sin, 2003,39(4):402(in Chinese).
赵双群, 谢锡善. 一种新型镍基高温合金长期时效后的组织和性能[J]. 金属学报, 2003, 39(4):402.
18 Yang Y Q, Luo X, Huang B. Microstructure of Inconel X-750 superalloy[J]. Trans Mater Heat Treat, 2007,28(8):3(in Chinese).
杨延清,罗贤,黄斌. InconelX-750高温合金的组织变化[J]. 材料热处理学报, 2007,28(8):3.
19 Gao X L, Xia T D, Wang X J, et al. Present research status for metals refinement methods[J]. Met Funct Mater, 2009,16(6):62(in Chinese).
高晓龙, 夏天东, 王晓军,等. 金属晶粒细化方法的研究现状[J]. 金属功能材料, 2009,16(6):62.
20 Wang J J, Guo H, Zhou Y Z, et al. Influence of cold-working on microstructure and properties of a modified Inconel X-750 alloy[J]. Spec Steel, 1997(5):15(in Chinese).
王家军, 郭晖, 周亦胄,等. 冷变形对InconelX-750改型合金组织性能的影响[J]. 特殊钢, 1997(5):15.
21 Nembach E, Pesicka J, Mohles V, et al. The effects of a second aging treatment on the yield strength of γ'-hardened NIMONIC PE16-polycrystals having γ'-precipitate free zones[J]. Acta Mater, 2005,53(8):2487.
22 余永宁, 刘国权. 体视学:组织定量分析的原理和应用[M]. 北京: 冶金工业出版社, 1989.
[1] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[2] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[3] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[4] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[5] 肖涵松, 玄伟东, 戴睿卿, 刘泳鸿, 李俊杰, 任忠鸣. 高温合金精密铸造用陶瓷型壳及其与合金界面反应的研究进展[J]. 材料导报, 2024, 38(10): 22100275-8.
[6] 王杰, 黄海亮, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 23020100-9.
[7] 霍苗, 赵惠. 籽晶法制备高温合金单晶叶片的研究进展[J]. 材料导报, 2023, 37(17): 21120070-6.
[8] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[9] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[10] 骆传跃, 郑光明, 盖少磊, 姜秀丽, 杨先海, 程祥. 深冷处理对Al2O3-SiCw陶瓷刀具表面完整性及切削性能的影响[J]. 材料导报, 2023, 37(14): 21120031-8.
[11] 钟伟杰, 焦东玲, 邱万奇, 刘仲武. 熔体温度和雾化压力对氩气雾化镍基高温合金粉末的影响[J]. 材料导报, 2023, 37(10): 21070245-6.
[12] 王以霖, 谭毅, 崔传勇, 游小刚, 赵龙海, 崔弘阳, 李鹏廷, 李晓娜. 电子束熔炼新型Ni-Co基高温合金过程中合金元素的挥发行为及熔池温度计算[J]. 材料导报, 2023, 37(1): 21080061-6.
[13] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[14] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[15] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed