Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21180-21187    https://doi.org/10.11896/cldb.19080004
  高分子与聚合物基复合材料 |
纤维增强热塑性复合材料原位聚合成型技术研究进展
龚明, 张代军, 刘燕峰, 张嘉阳, 李军, 陈祥宝*
中国航发北京航空材料研究院,北京100095
Progresses of In-situ Polymerization Manufacturing Technology of Fiber Reinforced Thermoplastic Composites: a Review
GONG Ming, ZHANG Daijun, LIU Yanfeng, ZHANG Jiayang, LI Jun, CHEN Xiangbao
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
下载:  全 文 ( PDF ) ( 4809KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近20年来,纤维增强热塑性复合材料以其优异的韧性、可修复和可回收性,引起了工业界广泛的研究。目前工业中纤维增强热塑性复合材料的成型方法大多为热熔法,包括树脂膜法、树脂粉末法、混纤法、预浸料与半预浸料法。这一类成型方法主要关注树脂高聚物的热成型性能,辅以高温高压成型复合材料。由于树脂是大分子长链,本身流动困难,浸渍纤维困难,从源头决定了复合材料性能不高。于是,热塑性复合材料的原位聚合成型技术以其低成本、高性能等特点成为最新的研究热点。
通过对树脂聚合过程的研究,包括树脂聚合过程中温度、压力等参数对树脂聚合的影响等,为纤维增强热塑性复合材料原位聚合成型技术的应用奠定了基础。使用合适的树脂与引发体系,在纤维周围原位聚合高聚物,从而制备性能优异的热塑性复合材料。对PA6(Polyamide-6)树脂的阴离子聚合研究起始于19世纪30年代,这一体系对于反应条件参数的控制与反应洁净度要求非常高。对这一问题的研究催生了最早的密封混料设备,进一步发展出结构反应注射SRIM(Structural reaction injection molding)与真空注射VI(Vacuum infusion)成型技术。这些技术保证了反应环境的清洁度,对于温度压力的控制非常精细,能够满足这一高性能材料的成型要求。同时将成型周期缩短至数分钟,大幅提高了生产效率。对PMMA(Polymethyl methacrylate)树脂原位聚合制备大型结构件的研究主要集中于其热量传导方面,制备厚制件与大尺寸制件过程中传质传热问题非常突出。研究者设计了种类繁多的引发体系,关注了其诱导时间、凝胶时间点等反应动力学过程。同时,一部分研究者关注了热量传导的模拟,预测了制备复合材料的最大厚度。这些研究共同推动了PMMA树脂原位聚合成型技术的发展,使用这一方法成功制备了大型整体船身结构。另外,学者们还研究了PBT(Polybutylene terephthalate)等结晶性树脂在聚合过程中的结晶性能变化,为该类树脂的成型提供了理论支撑。
本文综述了纤维增强热塑性复合材料原位聚合成型技术的研究进展,详述了几种较为常用的成型技术,热塑性树脂传递模塑T-RTM(Thermoplastic resin transfer molding)、结构反应注射SRIM与真空注射VI。分别讨论了使用这些技术的研究实例,分析了每种技术的特点与关键点。概述了几种热塑性复合材料原位聚合成型技术的其他方法。最后,综合讨论了纤维增强热塑性复合材料原位聚合成型技术的共性问题,展望了纤维增强热塑性复合材料原位聚合技术的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚明
张代军
刘燕峰
张嘉阳
李军
陈祥宝
关键词:  原位聚合  成型技术  热塑性复合材料  纤维增强    
Abstract: In last twenty years, fiber reinforced thermoplastic composites have been widely studied in industrial world for their excellent toughness, repairability and recyclability. At present, most of manufacturing processes of fiber reinforced thermoplastic composites in industry are melt processing, such as stacking alternating layers of fiber textiles and polymer sheets, textiles made of powder coated fibers, co-mingled textiles that consist of both reinforcing and polymer fibers and partially or fully consolidated panels (semi-pregs and pre-pregs). These processes mainly focus on the thermoforming properties of resin polymers, and are supplemented by high temperature and high pressure to processing composite mate-rials. Because of the large molecules of resin, it is difficult to flow and to impregnate the fiber, which determines the low performance of the composite from the source. Therefore, the in-situ polymerization manufacturing technology of thermoplastic composites has become the latest hotspot research due to its low cost and high performance.
Through the study of resin polymerization process, the influence of main parameters, such as temperature and pressure, in polymerization processes are learned. And it becomes bases of in-situ polymerization manufacturing technology of fiber reinforced thermoplastic composites. High quality fiber reinforced thermoplastic composites are prepared by in-situ polymerization around the fibers by using suitable resin and initiation system. The research of anionic polymerization of PA6 start at 1930s, this system requirements a very high level for controlling parameters of reaction conditions and reaction cleanliness. The researches on this problem develop of the earliest sealing mixing equipment, further develop of SRIM (Structural reaction injection molding) and VI (Vacuum infusion) technology. These technologies ensure the clean environment, very fine control on temperature and pressure, satisfies the requirement of the forming of high-performance materials. Furthermore, the manufacturing cycle is shortened to a few minutes, greatly improving the production efficiency. For PMMA in-situ polymerization researches, it is mainly concentrated in heat conduction, due to the very complex mass transfer and heat transfer processes in preparation of thick parts and large parts. Researchers designed a wide variety of initiator system, pay close attention to its reaction kinetics such as induction time and gel point. Some researchers have focused on the simulation of heat transfer and the prediction of the maximum thickness of composite materials. These studies have promoted the development of in-situ polymerization of PMMA resin and large integral hull structures are successfully manufactured. In addition, for PBT and other crystalline resins, the changes of their crystallization properties during the polymerization process were studied, which provided theoretical support for the manufacturing of this kind of resin.
This paper reviews the progresses of fiber reinforcedthermoplastic composites in-situ polymerization manufacturing technology, describes of several commonly used manufacturing technologies, T-RTM (Thermoplastic resin transfer molding), SRIM and VI. These techniques are discussed respectively in cases, the key points and the characteristics of each technology are analyzed. Some other methods of in-situ polymerization manufacturing technology of thermoplastic composites are summarized. Finally, the general problems of in-situ polymerization manufacturing technologies of thermoplastic composites are discussed, and the development trend is prospected.
Key words:  in-situ polymerization    manufacturing technology    thermoplastic composites    fiber reinforced
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TB332  
作者简介:  龚明,毕业于北京航空航天大学,分别于2015年与2018年获得工学学士与工学硕士学位。现于中国航发北京航空材料研究院攻读工学博士学位,在陈祥宝院士的指导下进行结构复合材料方面的研究。主要研究方向为纤维增强热塑性复合材料原位聚合方法。
陈祥宝,材料科学家,复合材料专家,中国工程院院士(2011年当选)。1991年毕业于鲁汶大学,获工学博士学位。现任中国航发航材院研究员、博士研究生导师、副院长,兼任先进复合材料国防科技重点实验室主任。长期从事先进树脂基复合材料研究工作。研制了耐高温高韧性复合材料、低温固化高性能复合材料,发展了复合材料制造过程模拟优化和自动铺放技术,提升了树脂基复合材料性能和制造水平,并得到大量应用,有力地支撑了国内航空装备的发展。相关成果获国家技术发明二等奖2项,国家科技进步二等奖2项,授权专利60余项,发表论文170余篇,出版著(译)作11部。
引用本文:    
龚明, 张代军, 刘燕峰, 张嘉阳, 李军, 陈祥宝. 纤维增强热塑性复合材料原位聚合成型技术研究进展[J]. 材料导报, 2020, 34(21): 21180-21187.
GONG Ming, ZHANG Daijun, LIU Yanfeng, ZHANG Jiayang, LI Jun, CHEN Xiangbao. Progresses of In-situ Polymerization Manufacturing Technology of Fiber Reinforced Thermoplastic Composites: a Review. Materials Reports, 2020, 34(21): 21180-21187.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080004  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21180
[1] Chen X B. Polymer matrix composites handbook, Chemical Industry Press, China, 2004 (in Chinese).
陈祥宝.聚合物基复合材料手册(精), 化学工业出版社, 2004.
[2] Talreja R, Mnson J A. Polymer matrix composites, Elsevier Science Ltd., The Kingdom of the Netherlands, 2001.
[3] Stavrov D, Bersee H.Composites Part A: Applied Science and Manufactu-ring, 2005, 36, 39.
[4] Steenkamer D A, Sullivan J L. Composites Part B: Engineering, 1998, 29B, 745.
[5] Mitschang P. Manufacturing of thermoplastic fiber-feinforced polymer composites, Wiley Encyclopedia of Composites. John Wiley & Sons, Inc., USA, 2011.
[6] Qi Y G. Modern Plastics Processing and Applications, 2011, 23(2), 60 (in Chinese).
戚亚光.现代塑料加工应用, 2011, 23(2), 60.
[7] Wang S H.Rubber and Plastic Technology and Equipment, 2014(6),47 (in Chinese).
王世文. 橡塑技术与装备, 2014(6),47.
[8] Weteringe BJ, Van D M, Bersee H.In: Proceedings of 15th International Conference on Composite Materials (ICCM-15). Durban, South Africa, 2005.
[9] Rijswijk K V, Bersee H. Composites Part A: Applied Science and Manufacturing, 2007, 38(3), 681.
[10] Steenkamer D A, Sullivan J L. Composites Part B: Engineering, 1998, 29(6), 745.
[11] He J, Wang Y, Zhang H. Composites Science and Technology, 2000, 60(10), 1919.
[12] Brunelle D J, Krabbenhoft H O, Bonauto D K. Macromolecular Symposia, 1994, 77(1), 117.
[13] Vaidya U K, Chawla K K. International Materials Reviews, 2008, 53(4), 185.
[14] Steeg M. Prozesstechnologie für Cyclic Butylene Terephthalate im Faser-Kunststoff-Verbund, Institut für Verbundwerkstoffe GmbH, Kaiserslau-tern, 2010.
[15] Chen G, Weng W, Wu D, et al.Journal of Polymer science Part B Polymer Physics, 2004, 42, 155.
[16] Weng W, Chen G, Wu D.Polymer, 2003, 44, 8119.
[17] Weng W, Chen G, Wu D, et al.Journal of Polymer science Part B Polymer Physics, 2004, 42, 2844.
[18] Du X, Xiao M, Meng Y, et al.Polymer International, 2004, 53, 789.
[19] Vlasveld D P N. Fibre reinforced polymer nanocomposites: applied Sciences, aerospace engineering, Delft University of Technology, Delft, 2005.
[20] Ali U, Karim K J, Buang N A.Polymer Reviews, 2015, 55(4), 1.
[21] Zhu G, Ding Y, Zhao D, et al.Journal of Applied Polymer Science, 2018, 135(21),46290.
[22] Kristina , Egidijus , Rymantas J K, et al.Polymer Composites, 2019, 40, E333.
[23] Tatyana A, Ilya S, Karger K J. Polymers, 2018, 10(4), 357.
[24] Qian C X, Zhao H K, Li Z G, et al. Materials Reports B: Research Papers, 2009, 23(12), 63(in Chinese).
钱春香, 赵洪凯, 李志刚,等. 材料导报:研究篇, 2009, 23(12), 63.
[25] Ishak Z A M, Leong Y W, Steeg M, et al. Composites Science and Technology, 2007, 67(3-4), 390.
[26] Parton H, Verpoest I. Polymer Composites, 2010, 26(1), 60.
[27] Chen Y. Technology and performance of CBT resin and its composites research. Master's Thesis, Harbin Institute of Technology, China,2013 (in Chinese).
陈英. CBT树脂及其复合材料的工艺与性能研究. 硕士学位论文,哈尔滨工业大学, 2013.
[28] Ishak Z A M, Shang P P, Karger-Kocsis J. Journal of Thermal Analysis and Calorimetry, 2006, 84(3), 637.
[29] Tripathy A R, Elmoumni A, Winter H H, et al. Macromolecules, 2005, 38(3), 709.
[30] Kim S H, Noh Y J, Ko Y W, et al. Polymer Engineering & Science, 2014, 54(9), 2161.
[31] Hao K A, Wang Z Q, Zhou L M. Advanced Materials Research, 2013, 750-752, 7.
[32] Mohd Ishak Z A, Gatos K G, Kargerkocsis J. Polymer Engineering & Science, 2010, 46(6), 743.
[33] Kudo H, Takeshi Y. Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52(6),857.
[34] Tsukada T, Takeda S I, Minakuchi S, et al. Journal of Composite Materials, 2016, 51(13), 1849.
[35] Horiuchi S, Yamamoto D, Kaiho S, et al. Macromolecular Symposia, 2015, 349(1), 9.
[36] Bulakh N, Jog J P, Nadkarni V M . Journal of Macromolecular Science, Part B, 1993, 32(3), 275.
[37] Pillay S, Vaidya U K, Janowski G M . Composites Science and Technology, 2009, 69(6), 839.
[38] Achilias D S. Macromolecular Theory & Simulations, 2007, 16(4), 319.
[39] Zoller A, Gigmes D, Guillaneuf Y. Polymer Chemistry, 2015, 6(31), 5719.
[40] Suzuki Y, Cousins D, Wassgren J, et al. Composites Part A: Applied Science and Manufacturing, 2017, 104, 60.
[41] Matheson M S, Auer E E, Bevilacqua E B, et al. Journal of the American Chemical Society, 1949, 71(2), 497.
[42] Charlier Q, Fontanier J C, Lortie, et al. Journal of Applied Polymer Science, 2018, 136, 47391.
[43] Boumbimba R M, Coulibaly M, Khabouchi A, et al. Composite Structures, 2016, 160, 939.
[44] Pillay S. Journal of Thermoplastic Composite Materials, 2005, 18(6), 509.
[45] Koichi N, Norio H, Goichi B, et al. In: Proceedings of the 7th AAC Composite Conference. Taipei(China), 2010, pp. 213.
[46] Louisy E, Samyn F, Bourbigot S, et al. Polymers, 2019, 11(2), 339.
[47] Barfknecht P W, Martin J, Pillay B, et al. Journal of Thermoplastic Composite Materials, 2016, 30(12), 1639.
[48] Zingraff L, Michaud V, Bourban P E, et al. Composites Part A: Applied Science and Manufacturing, 2005, 36(12), 1675.
[49] Wakeman M D, Zingraff L, Bourban P E, et al. Composites Science and Technology, 2006, 66(1), 19.
[50] Rosso P. Journal of Thermoplastic Composite Materials, 2005, 18(1), 77.
[51] PMáirtín, Mcdonnell P, Connor M T, et al. Composites Part A: Applied Science and Manufacturing, 2001, 32(7), 915.
[52] Karger K J, Yuan Q, Czigány T. Polymer Bulletin, 1992, 28(6), 717.
[53] Karger K J. Journal of Applied Polymer Science, 2010, 45(9), 1595.
[54] Karger K J, Czigány T. Journal of Materials Science, 1993, 28(9), 2438.
[55] Zingraff L, Bourban P E, Wakeman M D, et al. In: Proceedings of 23rd SAMPE Europe International Conference. Paris, France, 2002, pp.237.
[56] Michaud V, Zingraff L, Verrey J, et al. In: Proceedings of 7th International Conference on Flow Processes in Composite Materials (FPCM-7). San Diego (USA), 2003.
[57] Zingraff L, Bourban P E, Michaud V, et al. In: Proceedings of 14th International Conference on Composite Materials (ICCM-14).San Diego (USA), 2003.
[58] Agirregomezkorta A, Sanchez-Soto M, Aretxaga G, et al. Journal of Composite Materials, 2014, 48(3), 333.
[59] Rijswijk K V, Teuwen J J, Bersee H, et al. Composites Part A: Applied Science and Manufacturing, 2009, 40(1), 1.
[60] Rijswijk K V, Lindstedt S, Bersee H, et al. In: Proceedings of the 6th Annual SPE Automotive Composites Conference. Troy, MI, USA, 2006, pp.435.
[61] Rijswijk K V, Geenen A A, Bersee H. Composites Part A: Applied Science and Manufacturing, 2009, 40(8), 1033.
[62] Yan C, Li H, Zhang X, et al. Materials & Design, 2013, 46(4), 688.
[63] Kan Z, Yang M B, Yang W, et al. Composites Science & Technology, 2015, 110, 188.
[64] Barfknecht P W, Martin J, Pillay B, et al. Journal of Thermoplastic Composite Materials, 2016, 30, 1639.
[65] Pillay S. In: Proceedings of 7th International Conference on Flow Processes in Composite Materials. Newark (USA), 2004.
[66] Pillay S. Journal of Thermoplastic Composite Materials, 2005, 18(6), 509.
[67] Rijswijk K V, Bersee H, Jager W F, et al. Composites Part A: Applied Science and Manufacturing, 2006, 37(6), 949.
[68] Rijswijk K V, Bersee H, Jager W F, et al. Polymer Testing, 2006, 37(6), 949.
[69] Rijswijk K V, Joncas S, Bersee H, et al.Journal of Solar Energy Engineering, 2005, 127(4), 570.
[70] Rijswijk K V, Koppes K, Bersee H, et al.In: Proceedings of 7th International Conference on Flow Processes in Composite Materials (FPCM-7). Newark (USA), 2004.
[71] Rijswijk K V, Vlasveld D, Bersee H, et al.In: Proceedings of 4th International Conference on Composite Structures and Technology (ICCST-4). Durban, South Africa, 2003.
[72] Rijswijk K V, Vlasveld D, Van R P, et al.In: Proceedings of 14th International Conference on Composite Materials (ICCM-14). San Diego (USA), 2003.
[73] Yan C, Fan X Y, Yu L P, et al. Acta Material Composites Sinica, 2014, 35(5), 1134 (in Chinese).
颜春, 范欣愉, 于丽萍, 等.复合材料学报, 2014, 31(5), 1134.
[74] Yang F, Gao B Y, Mutua F, et al. Development and Application of Material, 2018, 33(5), 94 (in Chinese).
杨凡, 高远博, Mutua F, 等.材料开发与应用, 2018, 33(5), 94.
[75] Coll S M, Murtagh A M,Brádaigh C M. In: Proceedings of 25th SAMPE Europe International Jubilee Conference.Paris, France, 2004.
[76] Coll S M, Murtagh A M, Brádaigh C M. In: Proceedings of 7th International Conference on Flow Processes in Composite Materials (FPCM-7). Newark (DE, USA), 2004.
[77] Luisier A, Bourban P E,Mnson J A E. Journal of Applied Polymer Science, 2001, 81(4), 963.
[78] Epple S, Bonten C.In: International Conference of the Polymer Proce-ssing Society.Nuremberg, 2013, pp.454.
[79] Ringenbach S, Richeton J, Coulton J. JEC Composites Magazine, 2015, 52(98), 39.
[80] Khodabakhshi K, Gilbert M, Dickens P, et al. Advances in Polymer Technology, 2010, 29(4), 226.
[81] Khodabakhshi K, Gilbert M, Dickens P. Polymers for Advanced Technologies, 2013, 24, 503.
[1] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[2] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[3] 郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
[4] 刘洋, 庄蔚敏, 解东旋. 纤维增强复合材料与铝合金自冲铆接研究进展[J]. 材料导报, 2020, 34(11): 11053-11063.
[5] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[6] 张喆, 方健, 席丽敏. 基于响应面优化的石蜡相变微胶囊的性能评价[J]. 材料导报, 2019, 33(24): 4181-4187.
[7] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[8] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[9] 黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1122-1128.
[10] 朱彬荣, 潘金龙, 周震鑫, 张洋. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159.
[11] 郭妍婷, 黄雪, 尹垚骐, 陈曼, 冯光炷. 蒙脱土增强二聚酸改性不饱和聚酯树脂的制备及性能[J]. 材料导报, 2018, 32(18): 3249-3254.
[12] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[13] 何钦生, 邹兴政, 李方, 唐锐, 赵安中, 田世龙. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2684-2692.
[14] 李颖, 梅园, 王颖, 孟凡彬, 周祚万. 面向金属/树脂复合材料的纳米注塑成型技术综述[J]. 《材料导报》期刊社, 2018, 32(13): 2295-2303.
[15] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed