Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2295-2303    https://doi.org/10.11896/j.issn.1005-023X.2018.13.021
  高分子与聚合物基复合材料 |
面向金属/树脂复合材料的纳米注塑成型技术综述
李颖, 梅园, 王颖, 孟凡彬, 周祚万
西南交通大学材料科学与工程学院,成都 610031
The State-of-art of Nano-molding Technique Applying to the Production of Metal/Polymer Composites
LI Ying, MEI Yuan, WANG Ying, MENG Fanbin, ZHOU Zuowan
College of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031
下载:  全 文 ( PDF ) ( 2447KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在交通运输和电子等行业,产品的能源消耗大、成本高,使得人们追求更轻、强度更高的产品。特别是在电子封装领域,与轻质、易加工、高强度的金属/树脂复合材料相比,纯金属或者纯树脂产品已逐渐失去竞争力。金属/树脂复合材料是指金属与树脂以某种形式粘接起来的复合材料,除粘接界面是两相相互贯穿的复合体外,其余部分以各自体相单独存在。因粘接界面间的化学作用和较强的物理锚栓作用,复合材料具有较强的粘接性能,而非界面区域两相的单独存在使得复合材料具有金属与树脂双重特性。   金属/树脂复合材料的最大技术难点在于如何实现金属与树脂两相界面的牢固粘接。由于金属与树脂的性质差异较大,这种复合材料的加工方法不同于金属之间的焊接加工,也不同于树脂之间的熔融共混。因此,如何高效地制得低成本、性能优异的金属/树脂复合材料已成为这一领域的研究热点。目前,金属/树脂复合材料的加工方法主要有层压、激光焊接、摩擦叠焊、搅拌摩擦焊、超声焊接和纳米注塑等。其中,层压法只能用于制备结构简单、尺寸较大的产品;激光焊接、摩擦叠焊和搅拌摩擦焊会损伤制品表面,影响美观;超声焊接工艺复杂。而纳米注塑成型技术(Nano-molding technique,NMT)可实现金属/树脂复合材料的一体化制备,同时兼顾两相的粘接强度和制品的灵活设计,从而成为制备金属/树脂复合材料的重要技术方法并得到广泛研究。   为了制得性能优异的金属/树脂复合材料,NMT的原理与工艺技术被不断探索与完善。目前较为被认可的NMT原理是: 胺系化合物和特定树脂发生反应并产生热量,促进树脂在纳米孔中的流动;嵌入金属表面的树脂固化后在两相间形成锚栓作用,极大地增强了两相界面的粘接强度。NMT所适用的金属由原来的铝合金推广到了铜、不锈钢、钛、镁等金属。所用的树脂也由原先的几种工程树脂扩展到了聚苯硫醚(PPS)、聚对苯二甲酸丁二醇脂(PBT)、聚醚醚酮(PEEK)、聚邻苯二甲酰胺(PPA)和聚酰胺(PA)等一系列树脂。   文章重点概述了NMT技术的粘接原理、工艺流程、性能测试、技术研究进展以及相关应用,并对其今后发展方向与亟待解决的问题进行了相关讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李颖
梅园
王颖
孟凡彬
周祚万
关键词:  金属/树脂复合材料  纳米注塑成型技术(NMT)  粘接原理  工艺流程    
Abstract: The large energy consumption and high cost in the fields of transportation and electronics industries have been triggering the urgent demand for lighter and stronger products. Especially in the field of electronics packaging, metal/polymer compo-sites have gradually prevailed over metallic or polymer materials due to their lightweight, easy processing and high strength. Metal/polymer composites consist of metal and polymer phases which combined with each other by interpenetrating interfaces. The chemical interaction and physical anchor effect endow with high bonding strength of the resultant composites. Despite of the interfaces between two phases, metal and polymer still exhibit their own intrinsic properties.   How to achieve the strong bonding between metals and polymers is the biggest challenge to the fabrication of metal/polymer composites. Owing to the property disparity between metals and polymers, the processing techniques applicable for metal/polymer composites are quite different from either welding for metals or melt mixing for polymers. The development of an efficient and low-cost processing technique to obtain high-performance metal/polymer composites has hence become a hot topic in this field. The currently feasible routes to produce metal/polymer composites include lamination, laser bonding, friction stitch welding, friction stir welding, ultrasonic bonding and nano-molding. Among them, lamination can only be used to fabricate products with simple and large-size structure. Laser bonding, friction stitch welding and friction stir welding could induce scars to the surfaces of products. Ultrasonic bonding needs relatively complicated processing procedures. In comparison, nano-molding technology (NMT) can achieve the integrated fabrication of metal/polymer composites while mutually ensure the strong bonding between metal and polymer as well as the flexible design of products. Therefore, NMT has acquired extensive research interest as a predominant processing technique for fabricating metal/polymer composites.   For the sake of manufacturing more favorable metal/polymer composites, there have been continuous endeavors to explore and improve the mechanism and process regime of NMT. By now, the basically recognized mechanism of NMT is: Ⅰ. The heat generated by exothermic reactions between amine compounds and polymers promotes the flow of polymer melt in nanostructures on the metal surface; Ⅱ. The solidification of polymers embedded in the metals forms the “anchors” at the polymer/metal interface, thereby significantly enhancing the composite’s bonding strength. The metals applicatory for NMT have been extended from aluminum alloy to copper, stainless steel, titanium and magnesium, also, the polymer species which can be adapted for NMT have proliferated to a range of resins such as PPS, PBT, PEEK, PPA and PA.   This review gives summary descriptions over the bonding mechanism, manufacture processes, performance test, technological advances and applications with respect to NMT, as well as a prospective discussion on the future development trends and some unresolved key problems.
Key words:  metal/polymer composite    nano-molding technique (NMT)    bonding mechanism    manufacture process
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TB333  
基金资助: 四川省支撑计划项目(2016GZ0229);四川省科技支撑计划(2016GZ0224;2016CZYZF0003);中央高校基本科研业务费(2682016CX069)
通讯作者:  周祚万:通信作者,男,1964年生,博士,教授,主要从事高分子复合材料和纳米功能材料的制备及应用 E-mail:zwzhou@swjtu.edu.cn   
作者简介:  李颖:女,1993年生,博士研究生,研究方向为高分子复合材料的制备及性能研究 E-mail:y.maryli@my.swjtu.edu.cn
引用本文:    
李颖, 梅园, 王颖, 孟凡彬, 周祚万. 面向金属/树脂复合材料的纳米注塑成型技术综述[J]. 《材料导报》期刊社, 2018, 32(13): 2295-2303.
LI Ying, MEI Yuan, WANG Ying, MENG Fanbin, ZHOU Zuowan. The State-of-art of Nano-molding Technique Applying to the Production of Metal/Polymer Composites. Materials Reports, 2018, 32(13): 2295-2303.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.021  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2295
1 Cheng C P, Cheng C H, Chen Y C, et al. Ultrasonic dissimilar joi-ning of aluminum alloy and polymer with the composite material of ABS polymer doping carbonized rice husk[C]∥MATEC Web of Conferences. Japan,2017:06001.
2 张宾.金属树脂复合材料快速注塑模具制作工艺研究[J].科技展望,2016,26(7):65.
3 Yun L U, Fangjun W U, Xue G I, et al. Interfacial modification for an aluminum/epoxy resin laminated composite[J].Composite Interfaces,1994,2(4):265.
4 Botelho, Cocchierisilva E, Almeidapardini R, et al. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures[J].Materials Research,2006,9(3):247.
5 Katayama S, Kawahito Y. Laser direct joining of metal and plastic[J].Scripta Materialia,2008,59(12):1247.
6 Liu F C, Liao J, Nakata K. Joining of metal to plastic using friction lap welding[J].Materials & Design,2014,54(54):236.
7 Takamasa Ozawa, Kazuyoshi Katoh, Masakatsu Maeda. Friction stir lap welding of thermoplastic resins to 3003 aluminum alloy[J].Journal of Japan Institute of Light Metals,2015,65(9):403.
8 Konchakova N, Balle F, Barth F J, et al. Finite element analysis of an inelastic interface in ultrasonic welded metal/fibre-reinforced polymer joints[J].Computational Materials Science,2010,50(1):184.
9 安藤直樹.NMT:アルミ合金に対する熱可塑性エンプラの射出接合技術[J].成形加工,2004,16(9):588.
10 Sasaki H, Kobayashi I, Sai S, et al. Direct adhesion of nylon resin to stainless steel plates coated with triazine thiol polymer by electropolymerization during injection-molding[J].Ko-bunshi Rombun Shu,1998,5(8):470.
11 佐々木,英幸,小林,等.トリアジンチオ-ル処理リン青銅板とポリブチレンテレフタレ-ト樹脂の射出成形による直接接着[J].Research Bulletin of the Iwate Industrial Research Institute,1998,5(8):77.
12 Liu B, Chen C Q, Zhang B J. The application of nano-moulding technology for metal and plastic’s integration[J].Die & Mould Industry,2015,41(7):1(in Chinese).
刘斌,陈昌乾,张步进.金属与塑料一体化的纳米成型技术及应用[J].模具工业,2015,41(7):1.
13 板橋雅巳.金属と樹脂の直接接合を可能にした ナノモールディングテクノロジー(NMT)[J].表面技術,2015,66(8):359.
14 板橋雅巳.NMT金属·樹脂接合技術の最新の展開(特集 最新二次加工技術:接合·溶着·表面加飾)[J].プラスチックスエージ,2012,58(3):56.
15 安藤,直樹.アルミ合金に硬質樹脂を射出接合する技術「NMT」とその他金属に硬質樹脂を射出接合する技術「新NMT」(創立110周年記念 活躍する材料-未来を拓く材料技術の最前線)[J].日本機械学會誌,2007,110:164.
16 安藤,直樹.金属と熱可塑性エンプラ樹脂での射出接合技術「NMT(Nano molding tech.)」および「新NMT」(特集 樹脂と金属,樹脂とガラスなど「異なる材料どおしの」接着·接合技術)[J].Material Stage,2010,10(5):10.
17 黒岩剛毅.金属と樹脂の接合技術「NMT(Nano Molding Technology)」による金属代替成形品の可能性(特集2015年金型加工·樹脂成形技術の新潮流)-(部材軽量化に向けた樹脂成形技術)[J].型技術,2015,30(1):56.
18 He Y, Sun X, Ho H. New solutions for metal/plastic hybrid design via nano-molding technology[J/OL].SPE Plastics research online, http:∥www.4spepro.org/view.php?source=005957-2015-07-15.
19 安藤,直樹. ナノレベル凹凸をつくりこんだ金属とその利用法—アルミ合金に硬質樹脂を射出接合する「NMT」及びマグネシウム合金に硬質樹脂を射出接合する「新NMT」 (特集 ナノテクノロジーの展開—材料[J].Plastics Age,2006,27(4):52.
20 Plastics—Evaluation of the adhesion interface performance in plastic-metal assemblies: ISO 19095:2015[S/OL].[2015-08].https:∥www.iso.org/search.html?q=19095.
21 冨永 高広.金属-樹脂異種複合体の接合界面特性評価の ISO 規格化[J].成形加工:プラスチック成形加工学会誌,2016,28(3):107.
22 Ltd T P C. Bonding technology between metal and resin by injection molding (NMT)~technical summary, product samples and the technical possibilities~[J].Journal of the Society of Instrument & Control Engineers,2015,54(10):771.
23 田中刚,渡边康弘,锅仓利行.镁材与树脂零件的复合品及其制造方法:CN,104583462A[P].2012-07-30.
24 王长明.纳米成型技术的创新与应用[C]∥第二届纳米注塑以及金属手机外壳制程技术应用研讨会.昆山,2015.
25 蒋凯泉,汪永斌,陈建峰,等.应用于纳米注塑成型的高品质PBT基础树脂的制造方法:CN,106519196A[P].2017-10-27.
26 李东阵.一种用于纳米注塑的聚酯复合材料及其制备方法:CN,106009544A[P].2016-07-01.
27 陈彬,阳震.一种应用于NMT的树脂组合物:CN,106243668A[P].2016-08-10.
28 梁世杰.NMT+CNC工艺手机结构设计重点[C]∥纳米注塑以及竞争制程技术应用研讨会.深圳,2015:17.
29 Annerfors C O, Petersson S. Nano molding technology on cosmetic aluminum parts in mobile phones[D].Lund: Lund University,2007.
30 章晓,唐丽丽,程云,等.一种金属树脂复合体的制备方法及金属树脂复合体:CN,103448200A[P].2012-05-28.
31 Cao Y X, Lai H L, Qin Y. PBT engineering plastic composition used for NMT: WO,2016179770 A1[P].2015-05-11.
32 任项生.一种金属片、金属树脂复合体及其制备方法:CN,103993340 A[P].2014-05-20.
33 Naritomi M, Andoh N. Copper alloy composite and method for ma-nufacturing same: US,9017569[P].2015-04-28.
34 Andoh N. Nano molding technology: Aluminum alloy and hard resin integration technology by injection molding[J].Seikei-Kakou,2009,16(9):558.
35 Cao Y X, Lai H L, Deng D Y. PA (polyamide) resin composition used for NMT (nano molding technology) and having LDS (laser direct structuring) function: CN,105694447A[P].2016-03-09.
[1] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[4] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[5] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[6] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[7] 张修超, 蔡晓兰, 周蕾, 乔颖博, 吴灿, 张爽, 朱伟. 高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响[J]. 材料导报, 2018, 32(15): 2653-2658.
[8] 莫培程, 吴一, 于文霖, 王吉林, 邹正光, 钟生林, 王鹏. cBN-Ti-Al-Si原位合成PcBN复合材料及其力学性能[J]. 《材料导报》期刊社, 2018, 32(14): 2355-2359.
[9] 贾建刚, 高昌琦, 刘第强, 季根顺, 薛向军, 郭铁明, 郝相忠. 表面镀Ni碳纤维增强Cu基复合材料的制备和表征[J]. 《材料导报》期刊社, 2018, 32(14): 2462-2466.
[10] 杜成鑫, 杜忠华, 高光发, 徐立志, 程春, 王晓东. 钨丝/锆基非晶复合材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2252-2266.
[11] 袁秋红,周国华,廖 琳. 石墨烯纳米片/AZ91镁基复合材料的显微组织与力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1663-1667.
[12] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[13] 李慧慧,郭 桦,陈 琛,黄莹祥. 聚晶金刚石复合片表面裂纹视觉检测技术研究[J]. 《材料导报》期刊社, 2017, 31(24): 174-178.
[14] 陈毓焘, 李文晓, 金世奇. 铺层角度对碳纤维/形状记忆环氧树脂层合板形状回复性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 11-16.
[15] 周建华, 查向华. 纳米银/聚合物复合材料的原位法制备技术综述*[J]. 《材料导报》期刊社, 2017, 31(19): 43-50.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed