Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2252-2266    https://doi.org/10.11896/j.issn.1005-023X.2018.13.016
  金属与金属基复合材料 |
钨丝/锆基非晶复合材料研究进展
杜成鑫, 杜忠华, 高光发, 徐立志, 程春, 王晓东
南京理工大学机械工程学院,南京 210094
A Review on the Wf/Zr-based Bulk Metallic Glass Matrix Composite
DU Chengxin, DU Zhonghua, GAO Guangfa, XU Lizhi, CHENG Chun, WANG Xiaodong
School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094
下载:  全 文 ( PDF ) ( 5150KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钨丝/锆基非晶复合材料作为近20年新出现的穿甲工程材料,是一种极有可能替代具有放射性危害的贫铀合金和穿甲威力稍差的钨合金的新兴材料。自从钨丝/锆基非晶复合材料被制备出来以后,各学者先后对材料中钨丝和锆基非晶合金之间的界面接触强度、钨丝/锆基非晶复合材料中钨丝的参数、环境温度、应变率、仿真计算以及穿甲应用等方面进行了研究。研究表明,制备过程中保温温度,钨丝/锆基非晶复合材料中钨丝的排布方式、体积分数、直径,环境温度,应变率等因素都能对钨丝/锆基非晶复合材料的性能产生影响;随着计算机技术的发展,钨丝/锆基非晶复合材料的有限元仿真计算已经从等效模型发展到准细观建模,能够模拟其动静态压缩过程、侵彻过程,仿真结果和试验结果基本吻合;在应用方面,试验研究验证了钨丝/锆基非晶复合材料弹芯在侵彻过程中的“自锐”性能。文章概述了钨丝/锆基非晶复合材料在上述领域的研究进展并展望了该材料的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜成鑫
杜忠华
高光发
徐立志
程春
王晓东
关键词:  钨丝/锆基非晶复合材料  界面接触强度  钨丝参数  环境温度  应变率  仿真计算    
Abstract: As a new kind of penetrator materials in recent 20 years, Wf/Zr-based bulk metallic glass matrix composite is very likely to replace the depleted uranium alloys and tungsten alloys. Since the fabrication of Wf/Zr-based bulk metallic glass matrix composite, scholars have studied the interfacial strength, the parameters of the tungsten fiber, the environment temperature, the strain rate, the simulation and application of the composites. Research shows that the temperature and time during the process of preparation, tungsten fiber orientations, tungsten fiber volume fraction, tungsten fiber diameter, environment temperature, strain rate and other factors can affect the performance of Wf/Zr-based bulk metallic glass matrix composite. With the development of computer technology, the finite element simulation of Wf/Zr-based bulk metallic glass matrix composite has changed from equivalent model to quasi microstructure modeling, it could simulate the static and dynamic compression process, the penetration process, the simulation results has almost agreed with the experimental results. And the experimental research has verified the “self-sharped” characteristic of the Wf/Zr-based bulk metallic glass matrix composite when it penetrates the metallic target. Therefore, in this article, we attempt to provide an overview of research of Wf/Zr-based bulk metallic glass matrix composite, and the development trend of this material is prospected.
Key words:  Wf/Zr-based bulk metallic glass matrix composite    interfacial strength    tungsten fiber parameters    environment temperature    strain rate    simulation
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TB333  
基金资助: 国家自然科学基金(11472008;11372142;11772160;11202206)
通讯作者:  杜忠华:通信作者,男,1971年生,博士,研究员,博士研究生导师,主要从事撞击动力学行为研究 E-mail:duzhonghua@aliyun.com   
作者简介:  杜成鑫:男,1990年生,博士研究生,主要从事钨丝/锆基非晶复合材料侵彻行为研究 E-mail:duchengxin4324@163.com
引用本文:    
杜成鑫, 杜忠华, 高光发, 徐立志, 程春, 王晓东. 钨丝/锆基非晶复合材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2252-2266.
DU Chengxin, DU Zhonghua, GAO Guangfa, XU Lizhi, CHENG Chun, WANG Xiaodong. A Review on the Wf/Zr-based Bulk Metallic Glass Matrix Composite. Materials Reports, 2018, 32(13): 2252-2266.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.016  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2252
1 Wang W F. A brief history of metallic glasses[J].Physics,2011,40(11):701(in Chinese).
汪卫华.金属玻璃研究简史[J].物理,2011,40(11):701.
2 Wang W F. The nature and properties of amorphous matter[J].Progress in Physics,2013,33(5):177(in Chinese).
汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):177.
3 Huang J S, Liu Y, Chen S Q, et al. Progress and application of Zr-based amorphous alloys[J].The Chinese Journal of Nonferrous Me-tals,2003,13(6):1321(in Chinese).
黄劲松,刘咏,陈仕奇,等.锆基非晶合金的研究进展与应用[J].中国有色金属学报,2003,13(6):1321.
4 Hua N, Li G, Lin C, et al. Chemistry effects on the compressive property and Weibull modulus of Zr-based bulk metallic glasses[J].Journal of Non-Crystalline Solids,2015,432:342.
5 Chen Z Q, Huang L, Huang P, et al. Clarification on shear transformation zone size and its correlation with plasticity for Zr-based bulk metallic glass in different structural states[J].Materials Science & Engineering A,2016,677:349.
6 Johnson W L. Bulk amorphous metal—An emerging engineering material[J]. JOM Journal of the Minerals, Metals and Materials Society,2002,54(3):40.
7 Neogy S, Mukherjee A, Ashwini B, et al. Zirconium based bulk metallic glass/tungsten fibre composite—Fabrication and characterization[J].Transactions of the Indian Institute of Metals,2008,61(1):27.
8 Yu C. Impact experimental and nanoscopic mechanical simulation investigation of tungsten alloy for penetrator[D].Beijing:Beijing Institute of Technology,2015(in Chinese).
于超.穿甲弹用钨合金的冲击实验与纳观力学机理模拟研究[D].北京:北京理工大学,2015.
9 Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses[J].Materials Science and Engineering: R,2013,74(4):71.
10 Dai L H, Bai Y L. Basic mechanical behaviors and mechanics of shear banding in BMGs[J].International Journal of Impact Enginee-ring,2008,35(8):704.
11 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J].Acta Materialia,2011,59(6):2243.
12 Magness L. Advanced penetrator materials[R].Army Research Lab Aberdeen Proving Ground Md Weapons And Materials Research Directorate,2001.
13 Wang W H, Dong C, Shek C H. Bulk metallic glasses[J].Materials Science and Engineering: R,2004,44(2):45.
14 Qiao J, Jia H, Liaw P K. Metallic glass matrix composites[J].Materials Science and Engineering: R,2016,100:1.
15 Dandliker R B, Conner R D, Johnson W L. Melt infiltration casting of bulk metallic-glass matrix composites[J].Journal of Materials Research,1998,13(10):2896.
16 Zhang H F, Li H, Wang A M, et al. Synthesis and characteristics of 80vol% tungsten (W) fibre/Zr based metallic glass composite[J].Intermetallics,2009,17(12):1070.
17 Choi-Yim H, Schroers J, Johnson W L. Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10-Cu15.4Ni12.6 metallic glass matrix composites[J].Applied Physics Letters,2002,80(11):1906.
18 Wang Z H. Wf/Zr-based bulk metallic glass composites and its high-velocity impact behavior[D].Nanjing:Nanjing University of Science and Technology,2006(in Chinese).
王志华.Wf/Zr基块体金属玻璃复合材料及其高速冲击行为[D].南京:南京理工大学,2006.
19 Ma W F ,Kou H C, Chen C S, et al. Interfacial characteristics and dynamic mechanical properties of Wf/Zr-based metallic glass matrix composites[J].Transactions of Nonferrous Metals Society of China,2008,18(1):77.
20 Jiang F, Chen G, Li W L, et al. Thermal stability, glass-formation ability, and mechanical properties of (Zr41.2Ti13.8Cu12.5Ni10-Be22.5)100-xNbx, amorphous alloys[J].Metallurgical & Materials Transactions A,2008,39(8):1812.
21 Jiang F, Chen G, Wang Z, et al. Mechanical properties of tungsten fiber reinforced (Zr41.2Ti13.8Cu12.5Ni10Be22.5)100-xNbx, bulk metallic glass composites[J].Rare Metal Materials & Engineering,2011,40(2):206.
22 Wang M L, Hui X D, Dong W, et al. Interface of W fiber reinforced ZrTiCuNiBeNb bulk metallic glass matrix composite[J].The Chinese Journal of Nonferrous Metals,2004,14(10):1632(in Chinese).
王美玲,惠希东,董伟,等.钨丝增强ZrTiCuNiBeNb金属玻璃基复合材料界面[J].中国有色金属学报,2004,14(10):1632.
23 Zhang B, Fu H, Sha P, et al. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites[J].Materials Science and Engineering:A,2013,566:16.
24 Zhang B, Fu H, Li Z, et al. Anisotropic tensile properties of tungsten fiber reinforced Zr based metallic glass composites[J].Materials Science and Engineering:A,2014,619:165.
25 Wang B P, Yu B Q, Fan Q B, et al. Anisotropic dynamic mechanical response of tungsten fiber/Zr-based bulk metallic glass composites[J].Materials & Design,2016,93:485.
26 Conner R D, Dandliker R B, Johnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites[J].Acta Materialia,1998,46(17):6089.
27 Qiu K Q, Wang A M, Zhang H F, et al. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite[J].Intermetallics,2002,10(11):1283.
28 Zong H T, Ma M Z, Liu L, et al. Wf/Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass composites prepared by a new melt infiltrating method[J].Journal of Alloys and Compounds,2010,504:S106.
29 Wang H, Zhang H F, Hu Z Q. Tungsten fibre reinforced Zr-based bulk metallic glass composites[J].Materials and Manufacturing Processes,2007,22(6):687.
30 Wu X F, Zhang H F, Hu Z Q. Deformation behaviors and mechanical properties of tungsten fiber reinforced Zr-based bulk metallic amorphous matrix composite containing Co[J].Rare Metal Materials and Engineering,2005,34(6):863(in Chinese).
武晓峰,张海峰,胡壮麒.W丝增强含Co锆基非晶复合材料的变形行为与力学性能[J].稀有金属材料与工程,2005,34(6):863.
31 Wang Z H, Chen G, Jiang F, et al. Effect of volume fraction on quasistatic compressive characteristics of tungsten fiber/Zr-based bulk metallic glass matrix composites[J].Rare Metal Materials and Engineering,2006,35(10):1568(in Chinese).
王志华,陈光,姜斐,等.体积分数对Wf/Zr基非晶复合材料准静态压缩特性的影响[J].稀有金属材料与工程,2006,35(10):1568.
32 Chen J H, Chen Y, Jiang M Q, et al. On the compressive failure of tungsten fiber reinforced Zr-based bulk metallic glass composite[J].International Journal of Solids and Structures,2015,69:428.
33 Ma W F, Kou H C, Li J S, et al. Dynamic mechanical behaviors and fracture characteristic of tungsten fiber reinforced Zr-based metallic glass matrix composites[J].The Chinese Journal of Nonferrous Me-tals,2008,18(6):1045(in Chinese).
马卫锋,寇宏超,李金山,等.钨丝增强Zr基非晶复合材料动态力学行为及断裂特性[J].中国有色金属学报,2008,18(6):1045.
34 Wang L, Wang F C, Cheng H W, et al. Dynamic mechanical characteristics of W fiber/Zr-based amorphous matrix composites[J].Transactions of Beijing Institute of Technology,2003,23(2):165(in Chinese).
王鲁,王富耻,程焕武,等.钨丝/锆基非晶合金复合材料的动态力学特性[J].北京理工大学学报,2003,23(2):165.
35 Xue Y, Zhong X, Wang L, et al. Effect of W volume fraction on dynamic mechanical behaviors of W fiber/Zr-based bulk metallic glass composites[J].Materials Science and Engineering: A,2015,639:417.
36 Zhang H, Zhang Z F, Wang Z G, et al. Deformation and damage evolution of tungsten fiber reinforced metallic glass matrix composite induced by compression[J].Materials Science and Engineering:A,2008,483:164.
37 Zhang H, Zhang Z F, Wang Z G, et al. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite[J].Materials Science and Engineering:A,2006,418(1):146.
38 Zheng G P, Shen Y. Simulation of crack propagation in fiber-reinforced bulk metallic glasses[J].International Journal of Solids and Structures,2010,47(2):320.
39 Wu Z, Kang P C, Wu G H, et al. The effect of interface modification on fracture behavior of tungsten fiber reinforced copper matrix composites[J].Materials Science and Engineering:A,2012,536:45.
40 Zhang H, Liu L Z, Zhang Z F, et al. Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading[J].Journal of Materials Research,2006,21(6):1375.
41 Zhang B, Fu H M, Zhu Z W, et al. Effect of W fiber diameter on the compressive mechanical properties of the Zr-based metallic glass composites[J].Acta Metallurgica Sinica,2013,49(10):1191(in Chinese).
张波,付华萌,朱正旺,等.W纤维直径对锆基非晶复合材料压缩力学性能的影响[J].金属学报,2013,49(10):1191.
42 Xue Y F, Cai H N, Wang L, et al. Effect of loading rate on failure in Zr-based bulk metallic glass[J].Materials Science and Engineering:A,2008,473(1):105.
43 Chen J H, Chen Y, Jiang M Q, et al. Dynamic shear punch behavior of tungsten fiber reinforced Zr-based bulk metallic glass matrix composites[J].International Journal of Impact Engineering,2015,79:22.
44 Son C Y, Kim G S, Lee S B, et al. Dynamic compressive properties of Zr-based amorphous matrix composites reinforced with tungsten continuous fibers or porous foams[J].Metallurgical and Materials Transactions A,2012,43(6):1911.
45 Zhang B Y, Chen X H, Wang S S, et al. High strength tungsten wire reinforced Zr-based bulk metallic glass matrix composites prepared by continuous infiltration process[J].Materials Letters,2013,93:210.
46 Dragoi D, Üstündag E, Clausen B, et al. Investigation of thermal residual stresses in tungsten-fiber/bulk metallic glass matrix compo-sites[J].Scripta Materialia,2001,45(2):245.
47 Zhang X, Xue Y, Zhang H, et al. Thermal residual stresses in W fibers/Zr-based metallic glass composites by high-energy synchrotron X-ray diffraction[J].Journal of Materials Science & Technology,2015,31(2):159.
48 Lu J, Ravichandran G, Johnson W L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures[J].Acta Materialia,2003,51(12):3429.
49 陈刚,陈小伟,潘晓霞.钨纤维金属玻璃复合材料动态力学性能[C]∥第七届全国工程结构安全防护学术会议.宁波,2009.
50 Gao D, Guo C H, Jiang F C, et al. The dynamic compressive beha-vior of Wf/Zr-based metallic glass composites[J].Materials Science and Engineering: A,2015,641:107.
51 Chen G, Hao Y, Chen X, et al. Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures[J].International Journal of Impact Engineering,2017,106:110.
52 Wang G, Chen D M, Shen J, et al. Deformation behaviors of a tungsten-wire/bulk metallic glass matrix composite in a wide strain rate range[J].Journal of Non-Crystalline Solids,2006,352(36):3872.
53 Ma W, Kou H, Chen C, et al. Compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites[J].Materials Science and Engineering:A,2008,486(1):308.
54 Hou B, Li Y L, Xing L Q, et al. Dynamic and quasi-static mechanical properties of fibre-reinforced metallic glass at different temperatures[J].Philosophical Magazine Letters,2007,87(8):595.
55 Drapier S, Grandidier J C, Potier-Ferry M. Towards a numerical model of the compressive strength for long fibre composites[J].European Journal of Mechanics-A/Solids,1999,18(1):69.
56 Xia L X. Study on penetration behavior of Wf/Zr-based bulk metallic glass matrix composite[D].Nanjing:Nanjing University of Science and Technology,2014(in Chinese).
夏龙祥.钨纤维增强块体金属非晶复合材料侵彻行为研究[D].南京:南京理工大学,2014.
57 Li J C, Chen X W, Huang F L. FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite[J].Materials Science and Engineering:A,2016,652:145.
58 Li J C, Chen X W, Huang F L. FEM analysis on the “self-sharpening” behavior of tungsten fiber/metallic glass matrix composite long rod[J].International Journal of Impact Engineering,2015,86:67.
59 Leber S, Tavernelli J, White D D, et al. Fracture modes in tungsten wire[J].Journal of the Less Common Metals,1976,48(1):119.
60 Clausen B, Lee S Y, üstündag E, et al. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites[J].Scripta Materialia,2003,49(2):123.
61 Li Jianguang, Shi Qi, et al. Parameters calibration for Johnson-Cook constitutive equation[J]. Journal of Lanzhou University of Tochnology, 2012,38(2):164(in Chinese).
李建光,施琪,等.Johnson-Cook本构方程的参数标定[J].兰州理工大学学报,2012,38(2):164.
62 Li J C, Chen X W. Compressive-shear behavior and self-sharpening of bulk metallic glasses and their composite materials[J].Advances in Mechanics,2011,41(5):480(in Chinese).
李继承,陈小伟.块体金属玻璃及其复合材料的压缩剪切特性和侵彻/穿甲“自锐”行为[J].力学进展,2011,41(5):480.
63 Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites[J].International Journal of Impact Engineering,2000,24(5):435.
64 Choi-Yim H, Conner R D, Szuecs F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites[J].Scripta Materialia,2001,45(9):1039.
65 Lei B, Huang D W, Yang M C, et al. A experimental study on the self-sharpening behavior of armour piercer using tungsten fiber composite material[J].Transactions of Shenyang Ligong University,2008,27(1):72(in Chinese).
雷波,黄德武,杨明川,等.钨纤维复合材料穿甲弹芯自锐行为的试验研究[J].沈阳理工大学学报,2008,27(1):72.
66 Rong G, Huang D W. Self-sharpening phenomena of tungsten fiber composite material penetrators during penetration[J].Explosion and Shock Waves,2009,29(4):351(in Chinese).
荣光,黄德武.钨纤维复合材料穿甲弹芯侵彻时的自锐现象[J].爆炸与冲击,2009,29(4):351.
67 Rong G, Huang D W, Yang M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers[J].Theoretical and Applied Fracture Mechanics,2012,58(1):21.
68 Chen X W, Wei L M, Li J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix compo-site into Q235 steel target[J].International Journal of Impact Engineering,2015,79:102.
69 Wang J, Chen X W, Wei L M, et al. experimental research on steel target penetration of long rod projectile made of 80% W-fiber/Zr-based BMG[J].Journal of Experimental Mechanics,2014,29(3):279(in Chinese).
王杰,陈小伟,韦利明,等.80%钨纤维增强锆(Zr)基块体金属玻璃复合材料长杆弹侵彻钢靶实验研究[J].实验力学,2014,29(3):279.
70 Du Z H, Du C X, Zhu Z W, et al. An experimental study on perforation behavior of pole penetrator prepared from Wf/Zr-based bulk metallic glass matrix composite[J].Rare Metal Materials and Enginee-ring,2016,45(5):1308(in Chinese).
杜忠华,杜成鑫,朱正旺,等.钨丝/锆基非晶复合材料长杆体弹芯穿甲实验研究[J].稀有金属材料与工程,2016,45(5):1308.
71 Du Z H, Du C X, Zhu Z W, et al. An experimental study on perforation behavior of segmented Wf/Zr-based bulk metallic glass matrix composite[J].Rare Metal Materials and Engineering,2016,45(9):2359(in Chinese).
杜忠华,杜成鑫,朱正旺,等.分段结构的钨丝/锆基非晶复合材料弹芯穿甲实验研究[J].稀有金属材料与工程,2016,45(9):2359.
72 Du C X,Du Z H, Zhu Z W. Effect of tungsten fiber diameter on pe-netration ability of Zr-based metallic glass composites[J].Rare Metal Materials and Engineering,2017,46(4):1080(in Chinese).
杜成鑫,杜忠华,朱正旺.钨丝直径对锆基复合非晶材料穿甲性能的影响[J].稀有金属材料与工程,2017,46(4):1080.
73 Du C X,Du Z H, Zhu Z W. Effect of impact velocity and diameter of tungsten fiber on penetration ability of Wf/Zr-based metallic glass composite penetrator[J].Rare Metal Materials and Engineering,2017,46(6):1632(in Chinese).
杜成鑫,杜忠华,朱正旺.着靶速度和钨丝直径对钨丝/锆基非晶复合材料弹芯侵彻性能的影响[J].稀有金属材料与工程,2017,46(6):1632.
74 Chen X W, Li J C, Zhang F J, et al. Experimental research on the penetration of tungsten-fiber/metallic glass-matrix composite material penetrator into steel target[J].Explosion and Shock Waves,2012,32(4):346(in Chinese).
陈小伟,李继承,张方举,等.钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究[J].爆炸与冲击,2012,32(4):346.
75 Chen X W, Chen G. Experimental research on the penetration of tungsten-fiber/metallic-glass matrix composite material bullet into steel target[C]∥EPJ Web of Conferences. Freiburg,Germany,2012.
[1] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[2] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[3] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed