Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2267-2271    https://doi.org/10.11896/j.issn.1005-023X.2018.13.017
  金属与金属基复合材料 |
电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能
杜伟1,2, 石倩2, 代明江2, 易健宏1, 林松盛2, 侯惠君2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 广东省新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室,广州 510650
High Temperature Oxidation Resistance Performance of NiCrAlY andNiCoCrAlYHfSi Arc Ion Plating Coating
DU Wei1,2, SHI Qian2, DAI Mingjiang2, YI Jianhong1, LIN Songsheng2, HOU Huijun2
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 National Engineering Laboratory for Modern Materials Surface Engineering Technology, The Key Laboratory ofGuangdong for Modern Surface Engineering Technology, Guangdong Institute of New Materials,Guangzhou 510650
下载:  全 文 ( PDF ) ( 2631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用电弧离子镀技术在镍基高温合金DZ22B表面包覆一层NiCrAlY和NiCoCrAlYHfSi涂层,对比了两种涂层的微观形貌、结构和抗高温氧化性能,并讨论了不同活性元素在氧化中的作用。结果表明:NiCrAlY涂层主要由γ′-Ni3Al/γ-Ni、β-NiAl和α-Cr相组成,而NiCoCrAlYHfSi除上述组成外还形成了NiCoCr合金相,两种涂层热处理期间均发生β-NiAl向γ′-Ni3Al的转变过程。NiCrAlY和NiCoCrAlYHfSi涂层1 050 ℃恒温氧化200 h的平均氧化速率分别为0.072 3 g/(m2·h)和0.052 7 g/(m2·h)。NiCrAlY氧化初期直接形成α-Al2O3、NiCr2O4 和Cr2O3,随后出现裂纹、孔洞等缺陷,氧化物沿孔洞向涂层内部延伸,同时由于基材中的Ti元素发生外扩散,涂层中还形成了TiO2。NiCoCrAlYHfSi氧化初期形成了亚稳态的θ-Al2O3,随后慢慢转变为α-Al2O3,氧化物层比NiCrAlY均匀致密,抗高温氧化性能更优异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜伟
石倩
代明江
易健宏
林松盛
侯惠君
关键词:  电弧离子镀  镍基高温合金  涂层  抗高温氧化性能    
Abstract: NiCrAlY and NiCoCrAlYHfSi coatings were deposited on nickel-based superalloy DZ22B by arc ion plating. The microstructure, composition and high temperature oxidation resistance was compared, and the action of active elements in oxidation was discussed. Results show that the as-deposited coatings were mainly composed of γ′-Ni3Al/γ-Ni,β-NiAl, and α-Cr, and the addition of NiCoCr in NiCoCrAlYHfSi. After the heat treatment, the transformation of β-NiAl to γ′-Ni3Al occurred. The average oxidation rates of NiCrAlY and NiCoCrAlYHfSi coatings after 200 h were 0.072 3 g/(m2·h) and 0.052 7 g/(m2·h) at constant tempe-rature of 1 050 ℃. The α-Al2O3,NiCr2O4 and Cr2O3 phase firstly formed at the initial stage of oxidation of NiCrAlY. Cracks, holes and other defects were subsequently observed and the oxide extended to the interior of the coating along those defects. At the same time, TiO2 formed as a result of the diffusion of Ti in substrate. For NiCoCrAlYHfSi oxidation, metastable θ-Al2O3 formed at the initial stage and then transferred to stable α-Al2O3. The oxide layer is more uniform and dense compared to NiCrAlY, thus has better oxidation resistance.
Key words:  arc ion plating    nickel base superalloy    coating    high temperature oxidation resistance
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TG174.444  
基金资助: 广东省自然科学基金团队项目(2016A030312015);广东省科学院科技创新发展专项(2017GDASCX-0202);广东省科学院平台建设项目(2016GDASPT-0206)
通讯作者:  代明江:通信作者,男,1964年生,博士,教授,主要研究方向为真空镀膜技术 E-mail:daimingjiang@tsinghua.org.cn   
作者简介:  杜伟:男,1990年生,硕士研究生,主要从事抗高温氧化防护涂层方面的研究 E-mail:308889833@qq.com
引用本文:    
杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
DU Wei, SHI Qian, DAI Mingjiang, YI Jianhong, LIN Songsheng, HOU Huijun. High Temperature Oxidation Resistance Performance of NiCrAlY andNiCoCrAlYHfSi Arc Ion Plating Coating. Materials Reports, 2018, 32(13): 2267-2271.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.017  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2267
1 Wang Huiyang, An Yunqi, Li Chengyu, et al. Research progress of materials for nickel based superalloy[J].Materials Review,2011,25(S2):482(in Chinese).
王会阳,安云岐,李承宇,等.镍基高温合金材料的研究进展[J].材料导报,2011,25(S2):482.
2 She Li, Mu Shouchang. Study on microstructural stability of superalloy DZ22B long[J].Materials Engineering,1997(8):35(in Chinese).
佘力,穆寿昌.DZ22B定向凝固高温合金长时组织稳定性的研究[J].材料工程,1997(8):35.
3 Ji Yanling. Aninvestigation on oxidation resistance of DZ22/NiCr-AlY coating[J].Journal of Aeronautical Materials,1999,19(3):33.
4 Liu Jianming, Chen Meiying, Ren Jing, et al. The role of alloying elements in MCrAlY coatings[J].Thermal Spraying Technology,2010(4):30(in Chinese).
刘建明,陈美英,任先京,等.合金元素在MCrAlY涂层中的作用[J].热喷涂技术,2010(4):30.
5 Salam S, Hou P Y, Zhang Y D, et al. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys[J].Corrosion Science,2015,95:143.
6 Taylor M P, Evans H E. Formation of diffusion cells in LPPS MCrAlY coatings[J].Materials at High Temperatures,2003,20(4):461.
7 Toma D, Brandl W, Köster U. The characteristics of alumina scales formed on HVOF-sprayed MCrAlY coatings[J].Oxidation of Me-tals,2000,53(1):125.
8 Li Z, Qian S, Wang W. Influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings[J].Applied Surface Science,2011,257(24):10414.
9 Shen Tao, Chen Yiqi, Zhu Yan, et al. Progress in the study of Cu2ZnSnS4 films prepared by magnetron sputtering[J].Materials Review A:Review Papers,2016,30(11):14(in Chinese).
沈韬,陈怡琦,朱艳,等.磁控溅射制备Cu2ZnSnS4薄膜的研究进展[J].材料导报:综述篇,2016,30(11):14.
10 Keller I, Naumenko D, Quadakkers W J, et al. Influence of vacuum heat treatment parameters on the surface composition of MCrAlY coatings[J].Surface & Coatings Technology,2013,215(2):24.
11 Shen M, Zhao P, Gu Y, et al. High vacuum arc ion plating NiCrAlY coatings: Microstructure and oxidation behavior[J].Corrosion Science,2015,94:294.
12 Zhong J Y, Mu R D, He L M. High temperature oxidation beha-viour of plasma carburised Ni based single crystal superalloy with NiCoCrAlYHf high temperature oxidation protective coatings[J].Material Research Innovations,2014,18(S4):1115.
13 Zhou S, Liu J, Xiong Z, et al. Research progress on improving the high-temperature oxidation resistance of MCrAlY coatings[J].Laser & Optoelectronics Progress,2015,52(12):120004.
14 Itoh Y, Saitoh M. Mechanical properties of overaluminized MCrAlY coatings at room temperature[J].Journal of Engineering for Gas Turbines & Power,2005,127(4):807.
15 Wang B, Gong J, Huang M D. Behavior of alloying elements in MCrAlY coating[J].Materials Protection,2001,34(4):1.
16 Zhou Kesong, Liang Xinghua, Liu Min, et al. Oxidation kinetics of low pressure plasma sprayed NiCoCrAlYTa coating[J].Chinese Journal of Nonferrous Metals,2009,19(3):490(in Chinese).
周克崧,梁兴华,刘敏,等.低压等离子喷涂NiCoCrAlYTa涂层的氧化动力学[J].中国有色金属学报,2009,19(3):490.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[3] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[4] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[5] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[6] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[7] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[8] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[9] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[10] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[11] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[12] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[13] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[14] 王晋枝,姜淑文,朱小鹏. 添加WS2/MoS2固体润滑剂的自润滑复合涂层研究进展[J]. 材料导报, 2019, 33(17): 2868-2872.
[15] 肖来荣, 朴晟铭, 赵小军, 蔡圳阳, 韦道明. 热扩散法处理的M35螺丝冲头裂纹生成机制及工艺改良[J]. 材料导报, 2019, 33(16): 2710-2714.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed