Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2304-2310    https://doi.org/10.11896/j.issn.1005-023X.2018.13.022
  高分子与聚合物基复合材料 |
用于体外循环装置的材料涂层技术综述与展望
姜涛1, 王瑞彬1, 霍枫2
1 广东顺德工业设计研究院广东顺德创新设计研究院,佛山 528311;
2 广州军区广州总医院肝胆外科,广州 510010
The Review and Prospect of Cadiopulmonary Bypass Coating Materials
JIANG Tao1, WANG Ruibin1, HUO Feng2
1 Guangdong Shunde Industrial Design Institute Guangdong Shunde Innovative Design Institute, Foshan 528311;
2 Department of Hepatobiliary Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010
下载:  全 文 ( PDF ) ( 1762KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近几十年来,血液透析、心肺分流术、骨科、血管和重建手术等医学技术的不断进步促进了直接与生物组织接触的人工材料的迅速发展。由于任何外物与血液接触都会导致血液产生各种应急反应,最终引发凝血,导致医疗器械的闭塞和栓塞,这极大限制了材料在医学领域的应用。因此,提高体外循环中材料的生物相容性,特别是血液相容性,是解决问题的关键。目前,表面涂层技术是改善材料表面生物相容性最有效、应用最广泛的技术。本文主要综述了提高材料血液相容性的三种主要途径:构建生物材料惰性表面、材料表面仿生化、负载生物活性物质。同时介绍了诸如白蛋白、聚氧化乙烯、聚己酸内酯-聚二甲硅氧烷-聚己酸内酯、聚2-丙烯酸-2-甲氧基乙酯、磷酰胆碱、糖胺多糖、肝素、水蛭素、双嘧达莫等多种表面涂层技术及其临床应用,并对未来提高体外循环系统血液相容性的新方向提出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜涛
王瑞彬
霍枫
关键词:  涂层  体外循环  生物相容性  血液相容性  抗凝血  肝素    
Abstract: During the past several decades, the progress in techniques such as extracorporeal procedures including haemodialysis, cardiopulmonary bypass, as well as orthopedic, vascular and reconstructive surgery promoted the use of artificial materials in contact with living tissue dramatically. The evolution has highlighted the problems of biocompatibility. In the case of blood contact with any foreign materials induces activation of several host response defense mechanisms such as haemostatic mechanism, with consequences as thrombus formation, occlusion of medical device and embolization, which greatly limits the application of materials in medicine. Therefore, improving the biocompatibility of materials in cadiopulmonary Bypass system, especially the hemocompatibility, is the key to solve this problem. At present, the most effective and widely used technique for improving the biocompatibility of materials is surface coating technology. This paper reviews three main ways to improve the hemocompatibility of materials: build biological inert surface, bionic surface, and load bioactive substances, at the same time introduce several surface coating technologies and their clinical application, such as albumin, polyethylene oxide, SMA, PEMA, phosphorylcholine, glycosaminoglycan, heparin, hirudin, dipyridamole, and others. In the end, give a prospect of improving the hemocompatibility of cadiopulmonary bypass system.
Key words:  coating    cadiopulmonary bypass    biocompatibility    hemocompatibility    anticoagulation    heparin
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  R318.08  
基金资助: 广东省科技计划项目(2012A030400023)
作者简介:  姜涛:男,1987年生,硕士,工程师,主要从事生物医用材料的研究 E-mail:skearthy@hotmail.com
引用本文:    
姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
JIANG Tao, WANG Ruibin, HUO Feng. The Review and Prospect of Cadiopulmonary Bypass Coating Materials. Materials Reports, 2018, 32(13): 2304-2310.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.022  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2304
1 Mulvihill J N, Faradji A, Oberling F, et al. Surface passivation by human albumin of plasmaperesis circuits reduces platelet accumulation and thrombus formation. Experimental and clinical studies[J].Journal of Biomedical Materials Research Part A,1990,24(2):155.
2 Zimmermann A K, Weber N, Aebert H, et al. Effect of biopassive and bioactive surface-coatings on the hemocompatibility of membrane oxygenators[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials,2007,80(2):433.
3 Sefton M V, Gemmel C H. Nonthrombogenic treatments and strategies.∥Buddy D, Ratner Allan S, et al. Biomaterials Science, Second Edition[M].Amsterdam:Elsevier Academic Press,2004:456.
4 Alcantar N A, Aydil E S, Israelachvili J N. Polyethylene glycol-coated biocompatible surfaces[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials,2000,51:343.
5 Chen H, Zhang Z, Chen Y, et al. Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide)[J].Biomaterials,2005,26(15):2391.
6 Goor V J, et al. Reduced complement activation during cardiopulmonary bypass does not affect the postoperative acute phase response[J].European Journal of Cardio-Thoracic Surgery,2004,26:926.
7 Marcoux J, Sohn N, McNair E, et al. Outcomes comparison of 5 coated cardiopulmonary bypass circuits versus an uncoated control group of patients undergoing cardiac surgery[J].Perfusion,2009,24(5):307.
8 Eynden F V, Carrier M, Ouellet S, et al. Avecor trillium oxyge-nator versus noncoated monolyth oxygenator: A prospective randomized controlled study[J].Journal of Cardiac Surgery,2008,23(4):288.
9 Maria C T. Bioactive technologies for hemocompatibility[J].Expert Review of Medical Devices,2005,2(4):473.
10 Rubens F D, Labow R S, Lavallee G R, et al. Hematologic evaluation of cardiopulmonary bypass circuits prepared with a novel block copolymer[J].The Annals of Thoracic Surgery,1999,67(3):689.
11 Rubens F D, Ruel M, Lavallee G R, et al. Circuits with surface modifying additive alter the haemodynamic response to cardiopulmonary bypass[J].European Journal of Cardio-Thoracic Surgery,1999,15(3):353.
12 Newling R, Morris R. SMART tubing presents an increased risk of disconnection during extracorporeal circulation[J].The Journal of Extra-corporeal Technology,2005,37(4):400.
13 Suhara H, Sawa Y, Nishimura M, et al. Efficacy of a new coating material, PMEA, for cardiopulmonary bypass circuits in a porcine model[J].The Annals of Thoracic Surgery,2001,71(5):1603.
14 Suzuki Y, Daitoku K, Minakwa M, et al. Poly-2-methoxyethylacrylate-coated bypass circuits reduce activation of coagulation system and inflammatory response in congenital cardiac surgery[J].Journal of Artificial Organs,2008,11(3):111.
15 Itoh H, Ichiba S, Ujike Y, et al. A prospective randomized trial comparing the clinical effectiveness and biocompatibility of heparin-coated circuits and PMEA-coated circuits in pediatric cardiopulmonary bypass[J].Perfusion,2016,31(3):247.
16 Thiara A, Andersen V, Videm V, et al. Comparable biocompatibility of Phisio-and Bioline-coated cardiopulmonary bypass circuits indicated by the inflammatory response[J].Perfusion,2010,25(1):9.
17 Durrani A A, Hayward J A, Chapman D. Biomembranes as models for polymer surfaces Ⅱ: The syntheses of reactive species for covalent coupling of phosphorylcholine to polymer surfaces[J].Biomate-rials,1986,7(2),121.
18 Orban J M, Faucher K M, Dluhy R A, et al. Cytomimetic biomaterials. 4. In situ photopolymerization of phospholipids on an alkylated surface[J].Macromolecules,2000,33:4205.
19 Liu H, Faucher K M, Sun X L, et al. A membrane-mimetic barrier for cell encapsulation[J].Langmuir,2002,18:1332.
20 Ross E E, Bondurant B, Spratt T, et al. Formation of self-assembled, air-stable lipid bilayer membranes on solid supports[J].Langmuir,2001,17:2305.
21 Kolusheva S, Kafri R, Katz M, et al. Rapid colorimetric detection of antibody-epitope recognition at a biomimetic membrane interface[J].Journal of the American Chemical Society,2001,123:417.
22 Lee J H, Ju Y M, Kim D M. Platelet adhesion onto segmented pol-yurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers[J].Biomaterials,2000,21:683.
23 Iwasaki Y, Tojo Y, Kurosaki T, et al. Reduced adhesion of blood cells to biodegradable polymers by introducing phosphorylcholine moieties[J].Journal of Biomedical Materials Research Part A,2003,65:164.
24 Campbell E J, O’Byrne V, Stratford P W, et al. Biocompatible surfaces using methacryloylphosphorylcholine laurylmethacrylate copolymer[J].Asaio Journal,1994,40(3):853.
25 Reser D, Seifert B, Klein M, et al. Retrospective analysis of outcome data with regards to the use of Phisio®-, Bioline®-or Softline®-coated cardiopulmonary bypass circuits in cardiac surgery[J].Perfusion,2012,27(6):530.
26 Lorusso R, De Cicco G, Totaro P, et al. Effects of phosphorylcholine coating on extracorporeal circulation management and postoperative outcome: A double-blind randomized study[J].Interactive Cardio Vascular and Thoracic Surgery,2009,8(1):7.
27 Karakisi S, Kunt A, Çankaya , et al. Do phosphorylcholine-coated and uncoated oxygenators differ in terms of elicitation of cellular immune response during cardiopulmonary bypass surgery?[J].Perfusion,2015,20(2):1.
28 Schulze C J, Han L, Ghorpade N, et al. Phosphorylcholine-coated circuits improve preservation of platelet count and reduce expression of proinflammatory cytokines in CABG: A prospective randomized trial[J].Journal of Cardiac Surgery,2009,24(4):363.
29 Hoel T N, Thiara A S, Videm V, et al. In vitro evaluation of PHISIO-coated sets for pediatric cardiac surgery[J].Scandinavian Cardiovascular Journal,2009,43(2):129.
30 Lin H B, Garcia-Echeverria C, Asakura S, et al. Endothelial cell adhesion on polyurethanes containing covalently attached RGD-peptides[J].Biomaterials,1992,13:905.
31 Lin Y S, Wang S S, Chung T W, et al. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane[J].Artificial Organs,2001,25:617.
32 Wang D, Feng L, Ji J, et al. Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications[J].Journal of Biomedical Materials Research Part A,2003,65A:498.
33 McClung W G, Clapper D L, Hu S P, et al. Lysine-derivatized pol-yurethane as a clot lysing surface: Conversion of adsorbed plasminogen to plasmin and clot lysis in vitro[J].Biomaterials,2001,22:1919.
34 Aldenhoff Y B, Koole L H. Platelet adhesion studies on dipyridamole coated polyurethane surfaces[J].European Cells and Materials,2003,5:61.
35 Frost M C, Reynolds M M, Meyerhoff M E. Polymers incorporating nitric oxide releasing/generating substances for improved biocompa-tibility of blood-contacting medical devices[J].Biomaterials,2005,26,1685.
36 Phaneuf M D, Berceli S A, Bide M J, et al. Covalent linkage of recombinant hirudin to poly(ethylene terephthalate) (Dacron): Creation of a novel antithrombin surface[J].Biomaterials,1997,18:755.
37 Wyers M C, Phaneuf M D, Rzucidlo E M, et al. In vivo assessment of a novel dacron surface with covalently bound recombinant hirudin[J].Cardiovascular Pathology,1999,8:153.
38 Larm O, Larsson R, Olsson P. A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue[J].Biomaterials Medical Devices & Artificial Organs,1983,11:161.
39 Levy M, Hartman A R. Heparin-coated bypass circuits in cardiopulmonary bypass: Improved biocompatibility or not[J].International Journal of Cardiology,1996,53:S81.
40 Vocelka C, Lindley G. Improving cardiopulmonary bypass: Heparin-coated circuits[J].The Journal of Extra-corporeal Technology,2003,35(4):312.
41 Vroege R D, Stooker W, Oeveren W V, et al. The impact of heparin coated circuits upon metabolism in vital organs: Effect upon cerebral and renal function during and after cardiopulmonary bypass[J].Asaio Journal,2005,51(1):103.
42 Ovrum E, Tangen G, Tollofsrud S, et al. Heparinized cardiopulmonary bypass circuits and low systemic anticoagulation: An analysis of nearly 6000 patients undergoing coronary artery bypass grafting[J].The Journal of Thoracic and Cardiovascular Surgery,2011,141:1145.
43 Engbers G H, Feijen J. Current techniques to improve the blood compatibility of biomaterial surfaces[J].The International Journal of Artificial Organs,1991,14:199.
44 Tayama E, Hayashida N, Akasu K, et al. Biocompatibility of heparin-coated extracorporeal bypass circuits: New heparin bonded bioline system[J].Artificial Organs,2000,24:618.
45 Palatianos G M, Foroulis C N, Vassili M I, et al. A prospective, double-blind study on the efficacy of the bioline surface-heparinized extracorporeal perfusion circuit[J].The Annals of Thoracic Surgery,2003,761:129.
46 Ranucci M, Balduini A, Ditta A, et al. A systematic review of biocompatible cardiopulmonary bypass circuits and clinical outcome[J].The Annals of Thoracic Surgery,2009,87:1311.
47 Kreisler K R, Vance R A, Cruzzavala J, et al. Heparin-bonded cardiopulmonary bypass circuits reduce the rate of red blood cell transfusion during elective coronary artery bypass surgery[J].Journal of Cardiothoracic and Vascular Anesthesia,2005,19(5):608.
48 Wendel H P, Scheule A M, Eckstein F S, et al. Haemocompatibility of paediatric membrane oxygenators with heparin-coated surfaces[J].Perfusion,1999,14(1):21.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[3] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[4] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[5] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[6] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[7] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[8] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[9] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[10] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[11] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[12] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[13] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[14] 王晋枝,姜淑文,朱小鹏. 添加WS2/MoS2固体润滑剂的自润滑复合涂层研究进展[J]. 材料导报, 2019, 33(17): 2868-2872.
[15] 肖来荣, 朴晟铭, 赵小军, 蔡圳阳, 韦道明. 热扩散法处理的M35螺丝冲头裂纹生成机制及工艺改良[J]. 材料导报, 2019, 33(16): 2710-2714.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed