Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20070103-8    https://doi.org/10.11896/cldb.20070103
  金属与金属基复合材料 |
含铬铁水脱磷的研究进展
苏梁1,2, 陈良军1, 李杰1, 万勇1
1 安徽工业大学冶金工程学院,安徽 马鞍山 243032
2 北京科技大学冶金与生态工程学院,北京 100083
Research Progress in Dephosphorization of Chromium-containing Hot Metal
SU Liang1,2, CHEN Liangjun1, LI Jie1, WAN Yong1
1 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, Anhui, China
2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 2030KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全球矿石的大量开采,优质高品位铁矿石资源逐渐匮乏,价格飞涨,迫使我国大量钢铁企业增大高炉中廉价劣质的低品位铁矿石的配比。其中含铬低品位国产矿、红土镍矿以及铬镍矿等含铬矿的大量配入致使高炉产出大量的普通含铬(w(Cr)=0.2%~1.0%)铁水。另一方面,我国不锈钢产量持续增加,累积了大量的不锈钢废钢和返回料,这些高铬二次资源的利用,也产生了大量高铬(w(Cr)>10%)铁水。进入铁水中的铬元素可显著降低铁水中磷的活度系数,并与铁水中的磷元素争夺氧原子,从而恶化脱磷的热力学条件。另外,氧化生成的氧化铬进入炉渣,会使炉渣粘度升高,恶化脱磷动力学条件。这些因素使得含铬铁水中有害元素磷的脱除变得尤为困难,从而制约了含铬铁水的生产,限制了低品位含铬矿和不锈钢返回料的利用。为了让冶金工作者对含铬铁水的脱磷研究有更加全面深入的认识,并为未来的相关研究提供新思路,本文对含铬铁水的脱磷研究进行了归纳总结,并着重介绍了逐渐被研究者们所重视的普通含铬铁水的脱磷问题、含铬铁水脱磷的造渣研究、脱磷废渣的解毒研究等方面的最新研究进展,最后指出了研究中的不足之处和未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏梁
陈良军
李杰
万勇
关键词:  含铬铁水  脱磷剂  选择性氧化  铬损  含铬废渣    
Abstract: With large-scale mining of ores all over the world, superior iron ore resources with high quality are facing the problems of exhaustion. As a consequence, the price of iron ore is soaring, which forces a large number of domestic steel enterprises to increase the ratio of cheap infe-rior iron ore charged in the blast furnace. Among the inferior iron ore, a great amount of chromium-containing ore such as low-grade domestic ore, laterite ore and nickel ore, is charged in the blast furnace, leading to the generation of a large amount of hot metal containing a moderate concentration of chromium (w(Cr)=0.2%—1.0%). Besides, the production of stainless steel in China continually expands, accompanied by the accumulation of a large number of stainless steel scrap and returning material. The utilization of these secondary resources containing high chromium further generates a mass of hot metal containing high chromium (w(Cr)>10%). The chromium introduced into hot metal significantly lowers the activity coefficient of phosphorus in hot metal and competes for oxygen atoms with phosphorus, thus worsening the thermodynamic conditions of dephosphorization. Moreover, the chromium in hot metal is oxidized and migrated into slag, increasing the viscosity of slag and deteriorating the kinetics conditions for dephosphorization. For these reasons, the removal of harmful element phosphorus from hot metal containing chromium turns to be particularly difficult. This restricts the production of hot metal containing chromium and limits the utilization of low-grade chromium-containing ore and the returning material during the production of stainless steel. To provide more in-depth understanding and novel ideas concerning the dephosphorization of hot metal containing chromium to metallurgical workers, the studies on the dephosphorization of hot metal containing chromium were summarized, and the new research progress (such as the dephosphorization of hot metal containing moderate chro-mium, the detoxification and slag forming of dephosphorization slag) was focused on in this paper. Finally, the deficiencies in the research were pointed out and the research directions in the future were set.
Key words:  chromium-containing hot metal    dephosphorization agent    selective oxidation    chromium loss    waste slag containing chromium
发布日期:  2022-04-07
ZTFLH:  TF701.3  
基金资助: 国家自然科学基金(U1960110)
通讯作者:  ljchen2016@163.com   
作者简介:  苏梁,2020年7月毕业于安徽工业大学,获得工学学士学位。现为北京科技大学冶金与生态工程学院硕士研究生,在王福明老师的指导下进行研究。目前主要研究领域为:钢中合金化、相变以及组织控制。
陈良军,安徽工业大学冶金工程学院讲师。2009年6月本科毕业于中南大学资源加工与生物工程学院,2017年到2018年在加拿大多伦多大学材料科学与工程学院进行联合培养,2019年1月在北京科技大学冶金国家重点实验室取得冶金工程专业博士学位,2019年1月到2021年1月在安徽工业大学进行博士后研究工作。主要从事高品质钢开发和铁水脱磷方面的研究。近年来,发表论文10余篇,投稿期刊包括Steel Research International, Ironmaking & Steelmaking, Metals, Canadian Metallurgical Quarterly, Transactions of the Indian Institute of Metals等。
引用本文:    
苏梁, 陈良军, 李杰, 万勇. 含铬铁水脱磷的研究进展[J]. 材料导报, 2022, 36(7): 20070103-8.
SU Liang, CHEN Liangjun, LI Jie, WAN Yong. Research Progress in Dephosphorization of Chromium-containing Hot Metal. Materials Reports, 2022, 36(7): 20070103-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070103  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20070103
1 Zn S B, Zhang L W. Hebei Metallurgy, 2014, 226(10), 38(in Chinese).
曾四宝, 张利武. 河北冶金, 2014, 226(10), 38.
2 Ma G J, Su W H, Xue Z L, et al. In: Proceedings of the 7th China Iron and Steel Annual Conference. Beijing, 2009, pp. 152(in Chinese).
马国军, 苏伟厚, 薛正良, 等. 第七届中国钢铁年会大会论文集. 北京, 2009, pp. 152.
3 Niu S, Ren Y, Fu H L, et al. Shanghai Metals, 2015, 37(4), 56(in Chinese).
牛帅, 任勇, 付辉龙, 等. 上海金属, 2015, 37(4), 56.
4 Jia L B. Process optimization of oxidation dephosphorization of chromium and nickel-containing molten iron and study on harmless treatment for the slag. Master's Thesis, Northeastern University, China, 2013(in Chinese).
贾刘兵. 含铬镍铁水氧化脱磷工艺优化及渣无害化处理研究. 硕士学位论文, 东北大学, 2013.
5 Xuan X Y. Study on dephosphorization of hot metal with high phosphorus content. Master's Thesis, Kunming University of Science and Technology, China, 2014(in Chinese).
轩心宇. 高磷铁水脱磷工艺研究. 硕士学位论文, 昆明理工大学, 2014.
6 Dong Y C, Chen Y G.Iron and Steel, 1994, 29(12), 14(in Chinese).
董元篪, 陈友根. 钢铁, 1994, 29(12), 14.
7 Zhao J X, Fu J, Fu P Y.Jiangsu Metallurgy, 2003, 31(1), 20(in Chinese).
赵俊学, 傅杰, 富平原. 江苏冶金, 2003, 31(1), 20.
8 Liang L K, Wang Z Y, Guo Z W, et al. Iron and Steel, 1994, 29(3), 40(in Chinese).
梁连科, 王忠英, 郭仲文, 等. 钢铁, 1994, 29(3), 40.
9 Inoue R, Li H, Suito H. Transactions of the Iron & Steel Institute of Japan, 1988, 28(3), 180.
10 Wu Y J, Jiang Z H, Liang L K, et al. Journal of Iron and Steel Research, 2003, 15(4), 13(in Chinese).
武拥军, 姜周华, 梁连科, 等. 钢铁研究学报, 2003, 15(4), 13.
11 Ye B, You J Z, Ding W Z.Ferro-Alloys, 2001, 156(1), 1(in Chinese).
叶斌, 游锦洲, 丁伟中. 铁合金, 2001, 156(1), 1.
12 Zhu B L, Zhang M H, Li S Q, et al. Journal of East China Institute of Metallurgy, 1994, 11(3), 3(in Chinese).
朱本立, 张茂槐, 李士琦, 等. 华东冶金学院学报,1994,11(3),3.
13 Wang D G, Li J, Xia Y J, et al. Journal of Iron and Steel Research, 2016, 28(7), 20(in Chinese).
王多刚, 李杰, 夏云进, 等. 钢铁研究学报, 2016, 28(7), 20.
14 Wei Q S. Optimization of phosphorus removal process of high phosphorus iron. Master's Thesis, Xi'an University of Architecture and Technology, China, 2018(in Chinese).
魏起书. 高磷铁水脱磷工艺优化研究. 硕士学位论文, 西安建筑科技大学, 2018.
15 Li F S. Study on basic properties and dephosphorization behavior of steelmaking slag based on red mud based flux. Ph.D. Thesis, University of Science and Technology Beijing, China, 2019(in Chinese).
李凤善. 基于赤泥基熔剂的炼钢渣系基础性能及脱磷行为研究. 博士学位论文, 北京科技大学, 2019.
16 Diao J.Journal of Iron and Steel Research, 2013, 25(2), 9(in Chinese).
刁江. 钢铁研究学报, 2013, 25(2), 9.
17 JingShang M, DuiJing W, ShanTian J S, et al. Iron and Steel, 1986, 72(12), 153(in Japanese).
井上茂, 碓井務, 山田健三, 等. 钢铁, 1986, 72(12), 153.
18 Wu K M, Xu S Z.Iron and Steel, 1993, 28(6), 18(in Chinese).
吴开明, 徐世铮. 钢铁, 1993, 28(6), 18.
19 Dong Y C, Chen Y G, Liu S Z.Journal of Iron and Steel Research, 1994, 6(1), 15(in Chinese).
董元篪, 陈友根, 刘世洲. 钢铁研究学报, 1994, 6(1), 15.
20 Liu S P, Yang D X, Sun S C, et al. Iron and Steel, 1998, 33(9), 16(in Chinese).
刘守平, 杨德鑫, 孙善长, 等. 钢铁, 1998, 33(9), 16.
21 Zou X, Han Q Y, Ichise E, et al. Special Steel, 1998, 19(4), 21(in Chinese).
邹兴, 韩其勇, 一濑英尔, 等. 特殊钢, 1998, 19(4), 21.
22 Wu Y L.Special Steel, 2005, 26(6), 14(in Chinese).
吴永来. 特殊钢, 2005, 26(6), 14.
23 Zhou Y, Wang X L, Peng J.Steelmaking, 2008, 24(4), 56(in Chinese).
周云, 汪相林, 彭军. 炼钢, 2008, 24(4), 56.
24 Karbowniczek M, Kaweckacebula E, Reichel J, et al. Metallurgical and Materials Transactions B, 2012, 43(3), 554.
25 Xu Y S, Xu Y H, Gu Y Z, et al. Steelmaking, 2015, 31(5), 12(in Chinese).
徐玉松, 许云花, 顾永振, 等. 炼钢, 2015, 31(5), 12.
26 叶斌. 中国专利, CN108588336A, 2018.
27 李杰, 梁鹏, 王志, 等. 中国专利, CN109852756A, 2019.
28 Lee Y E.Iron and Steelmaker, 1993, 20(4), 43.
29 Diao J, Liu L, Gu W, et al. Steel Research International,2019,90(8),3.
30 Dai Z J, Jiao H D, Peng J, et al. China Foundry Machinery & Technology, 2020, 55(6), 15(in Chinese).
戴张杰, 焦海东, 彭军, 等. 中国铸造装备与技术,2020,55(6),15.
31 Wang Z. In: Proceedings of the 18th National Steelmaking Conference. Xi'an, 2014, pp. 68(in Chinese).
王政. 第十八届全国炼钢学术会议论文集. 西安, 2014, pp. 68.
32 Kyung-Hyo D, Hong-Sik N, Jung-Mock J, et al. ISIJ International, 2017, 57(8), 6.
33 Yao N, Xing C.Special Steel, 2017, 38(3), 41(in Chinese).
姚娜, 兴超. 特殊钢, 2017, 38(3), 41.
34 Hu F R.Gansu Metallurgy, 2015, 37(6), 22(in Chinese).
胡福荣. 甘肃冶金, 2015, 37(6), 22.
35 Yan W, Chen W Q, Zhao X B, et al. High Temperature Materials and Processes, 2017, 36(9), 4.
36 Yang L, Cheng G G, Xu M W, et al. In: Proceedings of the Ninth Annual Conference of China Iron and Steel. Beijing, 2013, pp. 1014(in Chinese).
杨亮, 成国光, 胥铭旺, 等. 第九届中国钢铁年会论文集. 北京, 2013, pp. 1014.
37 Diao J, Gu W, Liu L, et al. Ironmaking & Steelmaking,2020,47(9),1.
38 周渝生, 郭署强. 中国专利, CN101045950, 2007.
39 Zhao H Q, Qi Y H, Shi Y L, et al. Iron and Steel, 2017, 52(12), 16(in Chinese).
赵海泉, 齐渊洪, 史永林, 等. 钢铁, 2017, 52(12), 16.
40 Kawecka-Cebula E, Karbowniczek M, Suliga I. Archives of Metallurgy and Materials, 2016, 61(1), 301.
41 Lin Y, Luo Q Y, Yan B J, et al. Journal of Material Cycles and Waste Management, 2020, 22, 1210.
42 Zhao Q, Liu C, Cao L, et al. Minerals, 2018, 8(10), 1.
43 Zhao Q, Liu C J, Cao L H, et al. In: Report and Abstracts of the 20th National Steelmaking Conference. Sichuan, 2018, pp. 260(in Chinese).
赵青, 刘承军, 操龙虎, 等. 第二十届全国炼钢学术会议大会报告及论文摘要集. 四川, 2018, pp. 260.
44 Albertsson G J, Engstrom F, Teng L. Steel Research International, 2014, 85(10), 1430.
No related articles found!
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed