Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 770-776    https://doi.org/10.11896/cldb.201905007
  无机非金属及其复合材料 |
中空结构纳米TiO2微球的可控制备
吕斌1,2, 程坤1,2, 高党鸽1,2, 马建中1,2
1 陕西科技大学轻工科学与工程学院,西安 710021;
2 轻化工程国家级实验教学示范中心(陕西科技大学),西安 710021
A Technological Review on Controllable Preparation of Hollow StructuredNano-TiO2 Microspheres
LYU Bin1,2, CHENG Kun1,2, GAO Dangge1,2, MA Jianzhong1,2
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021;
2 National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi’an 710021
下载:  全 文 ( PDF ) ( 2534KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米TiO2作为一种氧化还原能力强、化学性质稳定、来源广泛和环境友好的多功能材料,被认为是非常有前景的半导体光催化材料之一。在各种形貌的纳米TiO2中,中空结构TiO2微球因具有密度低、比表面积大、渗透性好和稳定性高的特点而受到越来越多研究者的青睐。
寻求工艺简单、重复性好和产物形貌可控的中空纳米TiO2微球的制备方法显得尤为重要。中空纳米TiO2微球的制备方法根据制备原理可分为溶胶-凝胶法、水热法、溶剂热法、喷雾干燥法和层层自组装法等;根据制备过程中是否加入模板剂又可分为硬模板法、软模板法和无模板法。
本文针对硬模板法、软模板法和无模板法进行了综述。其中,硬模板是最早应用于中空TiO2微球制备的方法,最终所得中空TiO2的形貌、空腔大小和表面所带电荷与所用模板剂种类密切相关。目前常用的模板剂有三大类,包括聚合物、碳球和无机氧化物。而在制备模板剂过程中需要消耗大量的时间和有机溶剂,造成成本升高和环境污染。软模板法是目前最高效的一种制备方法,其制备机理与硬模板法较为相似,主要区别在于模板剂的选择上,前者的模板剂大多为刚性较强的无机粒子,而软模板剂通常为乳液液滴、超分子胶束、聚合物聚集体/囊泡等强度较低的气体或者液体。相比于硬模板法其最明显的优势在于后期对于模板剂的去除较为容易,不需要高温处理,多次洗涤即可除去,因此具有效率高、工艺简单等优势。无模板法是一种最具应用潜力的中空TiO2微球制备方法。此法大多为一步反应,因此其可控性较差,尚未实现大范围应用与生产。但是,该法具有制备步骤少、成本低和产率高等优势,在后期的批量生产和规模化制备中空TiO2微球方面具有潜在的优势。
目前,对于中空纳米TiO2微球的研究除了有效且成熟的制备工艺外,其高效的光催化性能也是研究者追求的目标。笔者认为通过以下三方面可以进一步提高中空纳米TiO2的光催化性能:其一,多种半导体材料的复合可拓宽其在可见光下的响应区域;其二,非金属阴离子(氮、碳)或金属(铁、铜)离子参杂等可提高光诱导二氧化钛电子空穴对的分离效率;其三,金属氧化物的表面修饰或双原位聚合改性等多种手段共同作用可降低电子-空穴对的重组。延长光生载流子的寿命、提高光催化活性将成为今后中空TiO2微球研究的重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕斌
程坤
高党鸽
马建中
关键词:  二氧化钛  中空结构  模板法  光催化    
Abstract: As a multifunctional material with strong redox ability, stable chemical properties, wide source and environmental friendliness, nano-TiO2 is considered as one of the most promising semiconductor photocatalytic materials. Among various morphologies of nano-TiO2, hollow-structured TiO2 microspheres have aroused increasing interests owing to their low density, large specific surface area, favorable permeability and high stability.
Undoubtedly, it is of great significance to seek an ideal approach with simple process, favorable repeatability and controllable morphology for hollow nano-TiO2 microsphere preparation. According to the preparation principle, preparation methods of hollow nano-TiO2 microspheres can be divided into sol-gel method, hydrothermal method, solvothermal method, spray drying method and layer self-assembly method. According to whether the template is added in the preparation process, these methods can also be classified into hard template method, soft template method and template-free method.
In this article, preparation approaches of hollow nano-TiO2 microspheres with and without template are reviewed. Among them, the hard template is regarded as the earliest method applied for the preparation of hollow TiO2 microspheres. Concerning the hard template method, the morphology, cavity size and surface charge of the obtained hollow nano-TiO2 are closely related to the types of adopting templates. Currently, there are mainly three kinds of hard template agents commonly used by researchers, including polymers, carbon spheres and inorganic oxides. Howe-ver, it is time consuming and a waste of organic solvent to prepare template agent, which resulted in an increase in production cost and environmental pollution. The soft template method is considered as one of the most efficient approach to prepare hollow nano-TiO2, which shares similar preparation principle with hard template method. The major distinction between hard template method and soft template method lies in the selection of template agents. Specifically speaking, the former usually employ rigid inorganic particles as template agents, and the latter commonly adopt low-intensity gas or liquid like emulsion droplets, supramolecular micelles, polymer aggregates or vesicles as template agents. Particularly, soft template method is superior to hard template method because of its convenience for removing the template agent in the later stage (no high temperature treatment is required). Therefore, soft template method features high efficiency and simple process. The template-free method is one of the most promising preparation methods for hollow nano-TiO2 microspheres. Unfortunately, the one-step reaction of template-free method leads to poor controllability for its products, which blocks the practical application, not to mention mass production. Nevertheless, thanks to the simple preparation steps, low cost and high yield of template-free method, it still exhibits great potential in batch production and large-scale preparation of hollow TiO2 microspheres.
At present, in addition to the effective and mature preparation process, numerous efforts have been made by researchers in pursuit of high-efficiency photocatalytic performance of hollow nano-TiO2 microspheres. It is believed that the photocatalytic properties of hollow nano-TiO2 can be further improved through the following three attempts. Firstly, the combination of a plurality of semiconductor materials will contribute to improving the response area under visible light. Secondly, non-metal anions (nitrogen, carbon) or metal (iron, copper) ion doping is beneficial to the separation efficiency of photoinduced titanium dioxide electron-hole pairs. Thirdly, surface modification of metal oxide and in-situ polymerization modification are conducive to reduce the recombination of electron-hole pairs. It is worth pointing out that prolonging the lifetime of photogenerated car-riers and increasing photocatalytic activity will become the research focus of hollow TiO2 microspheres in the future.
Key words:  titanium dioxide    hollow structure    template method    photocatalytic
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TQ316.33  
基金资助: 陕西省重点研发计划(2017GY-187);陕西省教育厅服务地方专项计划项目(17JF002);浙江省(2016年)省博士后科研项目(zj20160060)
作者简介:  吕斌,副教授,硕导,陕西省青年科技新星,现任陕西科技大学轻工科学与工程学院副院长,科锐新材料研究所所长,中国轻工业皮革清洁生产重点实验副主任,兼任中国皮革协会科技委员会常务委员、陕西省科技计划项目评审专家。主要从事高分子助剂(皮革化学品)的合成理论与作用机理研究及无机/有机纳米复合材料的研究。xianyanglvbin@163.com
引用本文:    
吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
LYU Bin, CHENG Kun, GAO Dangge, MA Jianzhong. A Technological Review on Controllable Preparation of Hollow StructuredNano-TiO2 Microspheres. Materials Reports, 2019, 33(5): 770-776.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905007  或          http://www.mater-rep.com/CN/Y2019/V33/I5/770
1 Zhang Z, Zuo F, Feng P. Journal of Materials Chemistry,2010,20(11),2206.
2 Zhang R Y, Tu B, Zhao D Y. Chemistry-A European Journal,2010,16(33),9977.
3 Diaz-Real J A, Dubed-Bandomo G C, Galindo-de-la-Rosa J, et al. Applied Catalysis B Environmental,2018,222,18.
4 Seadira T W P, Sadanandam G, Ntho T, et al. Applied Catalysis B Environmental,2017,222,133.
5 Dong W, Yao Y, Li L, et al. Applied Catalysis B Environmental,2017,217,293.
6 Nguyen C C, Vu N N, Do T O. Journal of Materials Chemistry A,2015,3(36),18345.
7 Valtchev V, Tosheva L. Chemical Reviews,2013,113(8),6734.
8 Fujishima A, Honda K. Nature,1972,238(5358),37.
9 Fujishima A, Rao T N, Tryk D A. Journal of Photochemistry & Photobio-logy C Photochemistry Reviews,2000,1(1),1.
10 Chen R, Wang J, Wang H, et al. Solid State Sciences,2011,13(3),630.
11 Wanag A, Rokicka P, Kusiaknejman E, et al. Ecotoxicology & Environmental Safety,2018,147,788.
12 Ma Q, Wang H, Zhang H, et al. Separation & Purification Technology,2017,189,193.
13 Zhang W, Xi Z, Li G, et al. Small,2009,5(15),1742.
14 Yu X, Yu J, Cheng B, et al. Journal of Physical Chemistry C,2009,113(40),17527.
15 Cong H, Yu S. Advanced Functional Materials,2010,17(11),1814.
16 Fang X, Zhao X, Fang W, et al. Nanoscale,2013,5(6),2205.
17 Liu B, Zeng H. Small,2005,1(5),566.
18 Ao Y H, Xu J J, Fu D G, et al. Journal of Hazardous Materials,2009,167(1-3),413.
19 Cui Y, Liu L, Li B, et al. Journal of Physical Chemistry C,2010,114(6),2434.
20 Lv Y J, Shi K Y, Guo X Z, et al. Chemical Journal of Chinese Universities,2006,27(2),346(in Chinese).
吕幼军,石可瑜,郭先芝,等.高等学校化学学报,2006,27(2),346.
21 Song X Q, Yang X H, Chen R F, et al. Acta Chimica Sinica,2006,64(3),198(in Chinese).
宋秀芹,杨晓辉,陈汝芬,等.化学学报,2006,64(3),198.
22 Iida M, Sasaki T, Watanabe M. Chemistry of Materials,1998,10(12),3780.
23 Xiong X, Yu Z, Lin M, et al. Reactive & Functional Polymers,2012,72(6),365.
24 Bao Y, Yang Y Q, Jianzhong M A. Journal of Inorganic Materials,2013,28(5),459.
25 Caruso F, Shi X Y, Caruso R A, et al. Advanced Materials,2001,13,740.
26 Petkovich N D, Stein A. Chemical Society Reviews,2013,42(9),3721.
27 Lu Y, Mclellan J, Xia Y. Langmuir,2004,20(8),3464.
28 Zhuang Y, Sun J, Guan M. Journal of Alloys & Compounds,2016,662,84.
29 Zhang K, Zhang X, Chen H, et al. Langmuir,2004,20(26),11312.
30 Song X S, Gao L. Journal of Physical Chemistry C,2007,111(23),8180.
31 Bao Y, Kang Q L. Journal of Inorganic Materials,2017,32(6),581(in Chinese).
鲍艳,康巧玲.无机材料学报,2017,32(6),581.
32 Xiong X, Lin M, Duan J, et al. Reactive & Functional Polymers,2012,72(6),365.
33 Perlich J, Memesa M, Diethert A, et al. Physica Status Solidi-Rapid Research Letters,2009,3(4),118.
34 Kim T H, Lee K H, Kwon Y K. Journal of Colloid & Interface Science,2006,304(2),370.
35 Strohm H, Löbmann P. Journal of Materials Chemistry,2004,14(2),138.
36 Strohm H. Journal of Materials Chemistry,2004,14(17),2667.
37 Imhof A. Langmuir,2001,17(12),3579.
38 Kang Q L, Bao Y, Li M, et al. Progress in Organic Coatings,2017,112,153.
39 Wang D, Song C, Lin Y, et al. Materials Letters,2006,60(1),77.
40 Li H, Ha C S, Kim I. Langmuir,2008,24(19),10552.
41 Sun X, Liu J, Li Y. Chemistry-A European Journal,2006,12(7),2039.
42 Ren W, Ai Z, Jia F, et al. Applied Catalysis B Environmental,2007,69(3),138.
43 Réti B, Kiss G I, Gyulavári T, et al. Catalysis Today,2016,284,160.
44 Wang C, Ao Y, Wang P, et al. Journal of Hazardous Materials,2010,178(1),517.
45 Zhao D, Peng T, Xiao J, et al. Materials Letters,2007,61(1),105.
46 Parida K M, Sahu N. Journal of Molecular Catalysis A Chemical,2008,287(1),151.
47 Zhao D, Peng T, Liu M, et al. Microporous & Mesoporous Materials,2008,114(1),166.
48 Peng T, Zhao D, Song H, et al. Journal of Molecular Catalysis A Chemical,2005,238(1),119.
49 Ao Y H, Xu J J, Fu D G, et al. Journal of Hazardous Materials,2009,167(1),413.
50 Liu J, Qin W, Zuo S, et al. Journal of Hazardous Materials,2009,163(1),273.
51 Wong M S, Hsu S W, Rao K K, et al. Journal of Molecular Catalysis A Chemical,2008,279(1),20.
52 Wang S H, Chen T K, Rao K K, et al. Applied Catalysis B Environmental,2007,76(3),328.
53 Wang C, Ao Y, Wang P, et al. Powder Technology,2011,210(3),203.
54 Wang C, Ao Y, Wang P, et al. Applied Surface Science,2010,257(1),227.
55 Yu J, Wang G. Journal of Physics & Chemistry of Solids,2008,69(5),1147.
56 Li G, Liu F, Zhang Z. Journal of Alloys & Compounds,2010,493(1-2),L1.
57 Ji B J, Qiao Z, Lee I, et al. Advanced Functional Materials,2012,22(1),166.
58 Bala H, Yu Y, Zhang Y. Materials Letters,2008,62(14),2070.
59 Wang Y, Zhou A, Yang Z. Materials Letters,2008,62(12-13),1930.
60 Nakashima T, Kimizuka N. Journal of the American Chemical Society,2003,125(21),6386.
61 Nagamine S, Sugioka A, Iwamoto H, et al. Powder Technology,2008,186(2),168.
62 Li B, Wang J H, Guo Y Z, et al. Materials Review,2006,20(7),36(in Chinese).
李斌,王剑华,郭玉忠,等.材料导报,2006,20(7),36.
63 Castillo S I R, Krans N A, Pompe C E, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2016,504,228.
64 Lu L Y, Xu L, Yin T T, et al. Advanced Materials Research,2013,634-638(1),2189.
65 Bao Y, Guo J, Ma J, et al. Journal of Industrial & Engineering Chemistry,2017,53,51.
66 Deng F P, Li Y, Qi X H, et al. Journal of Inorganic Materials,2009,24(1),39(in Chinese).
邓凤萍,李岳,岂兴红,等.无机材料学报,2009,24(1),39.
67 Kresge C T, Leonowicz M E, Roth W J, et al. Nature,1992,359(6397),710.
68 Li X, Xiong Y, Li Z, et al. Inorganic Chemistry,2006,45(9),3493.
69 Tian Q, Song J, Zhang Z, et al. Materials Chemistry & Physics,2015,151(154),66.
70 Wang L, Bao J, Wang L, et al. Chemistry-A European Journal,2006,12(24),6341.
71 Wei W, Xiao X, Zhang S, et al. Nanoscale Research Letters,2009,4(8),926.
72 Zhu G N, Wang Y G, Xia Y Y. Energy & Environmental Science,2012,5(5),6652.
73 Etacheri V, Marom R, Ran E, et al. Energy & Environmental Science,2011,4(9),3243.
74 Yang H G, Zeng H C. Journal of Physical Chemistry B,2004,108(11),3492.
75 Bao Y, Kang Q L, Ma J Z. Colloids & Surfaces A Physicochemical & Engineering Aspects,2018,537,69.
76 Wang Q, Qin Z, Chen J, et al. Applied Surface Science,2016,364(427),1.
77 Bao Y, Kang Q L, Ma J Z, et al. Ceramics International,2017,43,8596.
78 Nguyen D T, Kim K S. Chemical Engineering Journal,2016,286,266.
79 Li J, Zeng H C. Journal of the American Chemical Society,2007,129(51),15839.
80 Bordes M C, Vicent M, Moreno A, et al. Surface & Coatings Technology,2013,220(15),179.
81 Lakhotiya H, Singh R, Bahadur J, et al. Journal of Alloys & Compounds,2014,584(1),101.
82 Fang X, Zhao X, Fang W, et al. Nanoscale,2013,5(6),2205.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[7] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[8] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[9] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[10] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[11] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[12] 安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
[13] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[14] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[15] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed