Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 138-145    https://doi.org/10.11896/j.issn.1005-023X.2017.017.020
  太阳能电池材料 |
一维二氧化钛光阳极的制备及在染料敏化太阳能电池中的应用综述*
杨小洁1,2, 董兵海1,2, 陈凤翔1,2, 万丽1,2, 赵丽1,2, 王世敏1,2
1 湖北大学,有机化工新材料湖北省协同创新中心,功能材料绿色制备与应用教育部重点实验室,武汉 430062;
2 湖北大学材料科学与工程学院,武汉 430062
One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications
YANG Xiaojie1,2, DONG Binghai1,2, CHEN Fengxiang1,2, WAN Li1,2, ZHAO Li1,2, WANG Shimin1,2
1 Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062;
2 School of Materials Science and Engineering, Hubei University,Wuhan 430062
下载:  全 文 ( PDF ) ( 2014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二氧化钛由于具有合适的禁带宽度、良好的光电性能、制作工艺简单等特点,目前广泛应用于染料敏化太阳能电池中。其中,大部分光阳极主要是由纳米颗粒组成,但纳米颗粒不利于电子和空穴的分离及传输、染料敏化太阳能电池的光电转化效率的提升。因此,可采用一维纳米结构光阳极替换纳米颗粒,这有利于提升染料敏化太阳能电池的光电转化效率。一维纳米材料具有较少的晶界,可为电荷提供通道、加速电子的传输,且能有效减少空穴/电子的复合,减少电子与染料的复合,从而提高效率。同时一维二氧化钛其较大的比表面积,不仅有利于染料吸附量增加,而且能有效提高电流密度。综述了几种一维二氧化钛制备方法的最新研究进展,分析了不同制备方法对二氧化钛光阳极的能带结构、光吸收特性、染料吸附量和电子传输过程的影响,介绍了近几年一维二氧化钛在染料敏化太阳能中的应用。最后,对一维二氧化钛在染料敏化太阳能电池中的应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨小洁
董兵海
陈凤翔
万丽
赵丽
王世敏
关键词:  一维二氧化钛  染料敏化太阳能电池  光阳极  光电性能    
Abstract: Titanium dioxide(TiO2) has been widely used in dye sensitized solar cells because of its excellent band gap, good photoelectrochemical stability and simple fabrication process. The majority of the photoanode is mainly composed of nanoparticles, however, the nanoparticles are not beneficial to enhance the photoelectric conversion efficiency nor to separate electron and hole transport in the dye-sensitized solar cell. Therefore, one-dimensional nanostructured photoanodes can be used to replace the nanoparticles, which will greatly enhance the power conversion efficiency. One-dimensional nanomaterial have less grain boundaries, which can accelerate the charge transport of electrons, effectively reduce the recombination of holes / electrons and absorb the dye to improve efficiency. At the same time, the larger specific surface area of one-dimensional titania is not only beneficial to the increase of dye adsorption capacity, but also can effectively improve the current density. In this paper, the latest research progress of several one-dimensional TiO2 preparation methods are reviewed. The effects of different preparation methods on the band structure, light absorption characteristics, dye adsorption and electron transfer process are analyzed. The application of one-dimensional TiO2 dye-sensitized solar cell in recent years are introduced. Finally, the future application of one-dimensional TiO2 in dye-sensitized solar cells is proposed.
Key words:  one-dimensional titanium dioxide    dye-sensitized solar cells    photoanode    photovoltaic performance
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TM914.4  
基金资助: 湖北省科技厅项目(2016AAA034;2016CFB507);国家自然科学基金(51572072;51603063;21402045)
通讯作者:  董兵海:通讯作者,男,博士,副教授,主要从事功能材料方面的研究工作 E-mail:wwwdbh@163.com   
作者简介:  杨小洁:男,1990年生,硕士,主要从事光电功能材料研究 E-mail:mailyangxiaojie@126.com
引用本文:    
杨小洁, 董兵海, 陈凤翔, 万丽, 赵丽, 王世敏. 一维二氧化钛光阳极的制备及在染料敏化太阳能电池中的应用综述*[J]. 《材料导报》期刊社, 2017, 31(17): 138-145.
YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications. Materials Reports, 2017, 31(17): 138-145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.020  或          http://www.mater-rep.com/CN/Y2017/V31/I17/138
1 Bai Y, Mora-Sero I, De Angelis F, et al. Titanium dioxide nanomaterials for photovoltaic applications[J]. Chem Rev,2014,114(19):10095.
2 Ma Y, Wang X, Jia Y, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chem Rev,2014,114(19):9987.
3 Wang G, Wang H, Ling Y, et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting[J]. Nano Lett,2011,11(7):3026.
4 Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature,2008,453(7195):638.
5 Giordano F, Abate A, Baena J P C, et al. Enhanced electronic pro-perties in mesoporous TiO2 via lithium doping for high-efficiency pe-rovskite solar cells[J]. Nat Commun,2016,7:10379.
6 Tang K, Li Y, Cao H, et al. Amorphous-crystalline TiO2/carbon nanofibers composite electrode by one-step electrospinning for symmetric supercapacitor[J]. Electrochim Acta,2016,190:678.
7 Cheng Y, Chen Z, Wu H, et al. Lithium-ion batteries: Ionic liquid-assisted synthesis of TiO2-carbon hybrid nanostructures for lithium-ion batteries[J]. Adv Funct Mater,2016,26(9):1487.
8 Ge M, Cao C, Huang J, et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications[J]. J Mater Chem A,2016,4(18):6772.
9 Chai Z, Wu M, Fang M, et al. Similar or totally different: The adjustment of the twist conformation through minor structural modification, and dramatically improved performance for dye-sensitized solar cell[J]. Adv Energy Mater, 2015,5(18):1.
10 Hwang S H, Yun J, Jang J. Multi-shell porous TiO2 hollow nano-particles for enhanced light harvesting in dye-sensitized solar cells[J]. Adv Funct Mater,2014,24(48):7619.
11 Pan K, Dong Y, Tian C, et al. TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells[J]. Electrochim Acta,2009,54:7350.
12 Hossain M A, Park J, Ahn J Y, et al. Investigation of TiO2 nanotubes/nanoparticles stacking sequences to improve power conversion efficiency of dye-sensitized solar cells[J]. Electrochim Acta,2015,173:665.
13 Gyäri Z, Kónya Z, Kukovecz Á. Visible light activation photocatalytic performance of PbSe quantum dot sensitized TiO2 nanowires[J]. Appl Catal B—Environ,2015,179:583.
14 Ahn S H, Chi W S, Park J T, et al. Direct assembly of preformed nanoparticles and graft copolymer for the fabrication of micrometer-thick, organized TiO2 films: High efficiency solid-state dye-sensitized solar cells[J]. Adv Mater,2012,24:519.
15 Seong W M, Kim D H, Park I J, et al. Roughness of Ti substrates for control of the preferred orientation of TiO2 nanotube arrays as a new orientation factor[J]. J Phys Chem C,2015,119:13297.
16 Hoertz P G, Chen Z F, Kent C A, et al. Application of high surface area tin-doped indium oxide nanoparticle films as transparent conducting electrodes[J]. Inorg Chem,2010,49:8179.
17 Wee K R, Sherman B D, Brennaman M K, et al. An aqueous, organic dye derivatized SnO2/TiO2 core/shell photoanode[J]. J Mater Chem A,2016,4:2969.
18 Sabatini R P, Eckenhoff W T, Orchard A, et al. From seconds to femtoseconds: Solar hydrogen production and transient absorption of chalcogenorhodamine dyes[J]. J Am Chem Soc,2014,136:7740.
19 Wang H, Li J, Gong F, et al. Ionic conductor with high conductivity as single-component electrolyte for efficient solid-state dye-sensitized solar cells[J]. J Am Chem Soc,2013,135:12627.
20 Cui X J, Xiao J P, Wu Y H, et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells[J] Angew Chem Int Ed,2016,55:6793.
21 Snaith H J, Mende L S. Advances in liquid-electrolyte and solid-state dye-sensitized solar cells[J]. Adv Mater, 2007,19:3187.
22 Guo S W, Yuan C G. Preparation and application of silver nano composite fibers by electrostatic spinning[J]. Progress Chem,2015,27:1841.
23 Wang Juan. Fabrication, characterization and the property investigation of electrospun one-dimensional multiple oxide nanostructures[D]. Hangzhou:Zhejiang University, 2014.
王娟. 一维纳米多元氧化物材料的静电纺丝制备及其性能表征 [D].杭州:浙江大学,2014.
24 Li D, Xia Y. Fabrication of titania anofibers by electrospinning[J]. Nano Lett,2003,3:555.
25 Song M Y, Kim D K, Ihn K J, et al. Electrospun TiO2 electrodes for dye-sensitized solar cells[J]. Nanotechnology,2004,15:1861.
26 Yang Y, Wang H, Zhou Q, et al. Improved lithium storage properties of electrospun TiO2 with tunable morphology: From porous anatase to necklace rutile[J]. Nanoscale,2013,5:10267.
27 Du P, Song L, Xiong J, at al. Coaxial electrospun TiO2 /ZnO core-sheath nanofibers film: Novel structure for photoanode of dye-sensitized solar cells[J]. Electrochim Acta,2012,78:392.
28 Krishnamoorthy T, Thavasi V, Ramakrishna S. A first report on the fabrication of vertically aligned anatase TiO2 nanofibers by electrospinning: Preferred architecture for nanostructured solar cells[J]. Energy Environ Sci, 2011,4:2807.
29 Joshi P, Zhang L, Davoux D, et al. Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency[J]. Energy Environ Sci,2010,3:1507.
30 Yang L, Leung W W F. Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells[J]. Adv Mater,2011,23:4559.
31 Yang L, Leung, W W F. Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells[J]. Adv Mater,2013,25:1792.
32 Du P, Song L, Xiong J, et al. A photovoltaic smart textile and a photocatalytic functional textile based on co-electrospun TiO2/MgO core-sheath nanorods: Novel textiles of integrating energy and environmental science with textile research[J]. Textile Res J,2013,83(16):1690.
33 Shengyuan Y, Peining Z, Nair A S, et al. Rice grain-shaped TiO2 mesostructures—Synthesis, characterization and applications in dye-sensitized solar cells and photocatalysis[J]. J Mater Chem,2011,21:6541.
34 Zhu P N, Nair A S, Yang S Y, et al. Rice grain-shaped TiO2 -CNT composite—A functional material with a novel morphology for dye-sensitized solar cells[J]. J Photoch Photobio A: Chem,2012,231:9.
35 Hu H, Ding J, Zhang S, et al. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells[J]. Nanoscale Res Lett,2013,8(1):1.
36 Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J Mater Res,2001,16:3331.
37 Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes[J]. J Mater Chem.2007,17: 1451.
38 Wang X Y, Sun L D, Zhang S, et al. Ultralong, small-diameter TiO2 nanotubes achieved by an optimized two-step anodization for efficient dye-sensitized solar cells[J]. ACS Appl Mater Inter,2014,6:1361.
39 Jennings J R, Ghicov A, Peter L M, et al. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons[J]. J Am Chem Soc,2008,130:13364.
40 Lian Z, Wang W, Xiao S, et al. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution[J]. Sci Rep,2015,5:10461.
41 Yip C T, Guo M, Huang H, et al. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells[J]. Nanoscale,2012,4:448.
42 Hu J H, Zhao L, Yang Y P, et al. TiO2 nanotube arrays composite film as photoanode for high-efficiency dye-sensitized solar cell[J]. Int J Photoenergy,2014,2014(7):244.
43 Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube[J]. Langmuir,1998,14(12): 3160.
44 Kilic B, Turkdogan S, Astam A, et al. Preparation of carbon nanotube/TiO2 mesoporous hybrid photoanode with iron pyrite (FeS2 ) thin films counter electrodes for dye-sensitized solar cell[J]. Sci Rep,2016,6:27052.
45 Dong R, Jiang S, Li Z, et al. Superhydrophilic TiO2 nanorod films with variable morphology grown on different substrates[J]. Mater Lett,2015,152:151.
46 Xie Y, Xia C, Du H, et al. Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor[J]. J Power Sources,2015,286:561.
47 Sarkar D, Ghosh C K, Mukherjee S, et al. Three dimensional Ag2O/TiO2 type-Ⅱ (p-n) nanoheterojunctions for superior photocatalytic activity[J]. ACS Appl Mater Inter,2014,6:10044.
48 Wang F, Zhang G, Zhao Z, et al. TiO2 nanosheet array thin film for self-cleaning coating[J]. RSC Adv,2015,5: 9861.
49 Zhou Z J, Fan J Q, Wang X, et al. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells[J]. ACS Appl Mater Inter,2011,3:4349.
50 Akilavasan J, Wijeratne K, Moutinho H, et al. Hydrothermally synthesized titania nanotubes as a promising electron transport me-dium in dye sensitized solar cells exhibiting a record efficiency of 7.6% for 1-D based devices[J]. J Mater Chem A,2013,1:5377.
51 Iraj M, Nayeri F D, Asl-Soleimani E, et al. Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells[J]. J Alloys Compd,2016, 659:44.
52 Nakahira A, Kubo T, Numako C. Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process[J]. Inorg Chem,2010,49:5845.
53 Liu Y M, Zhang M L, Jiang Y, et al. Coupling effects of Au-decorated core-shell β-NaYF4∶Er/Yb@SiO2 microprisms in dye-sensitized solar cells: Plasmon resonance versus upconversion[J]. Electrochim Acta,2015,173: 483.
54 Tang Y, Zhang Y, Deng J, et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries[J]. Angew Chem Int Ed,2014,126:13706.
55 Tang Y, Zhang Y, Deng J, et al. Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries[J]. Adv Mater,2014,26:6111.
56 Liao C H, Shih W T, Chen C C, et al. Effect of photoelectrode morphology of single-crystalline anatase nanorods on the performance of dye-sensitized solar cells[J]. Thin Solid Films,2011,519:5552.
57 Wang G, Xiao X, Li W, et al. Significantly enhanced visible light photoelectrochemical activity in TiO2 nanowire arrays by nitrogen implantation[J]. Nano Lett,2015,15(7):4692.
58 Yuan T, Lu H B, Dong B H, et al. Single-crystalline rutile TiO2 nanorod arrays with high surface area for enhanced conversion efficiency in dye-sensitized solar cells[J]. J Mater Sci: Mater Electron,2015,26:1332.
59 Dai G, Zhao L, Li J, et al. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film[J]. J Colloid Interface Sci,2012,365(1):46.
60 Kathirvel S, Su C C, Shiao Y J, et al. Solvothermal synthesis of TiO2 nanorods to enhance photovoltaic performance of dye-sensitized solar cells[J]. Solar Energy,2016,132:310.
61 He Z, Que W, Chen J, et al. Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped TiO2 nanobelts prepared by solvothermal synthesis[J]. ACS Appl Mater Interface,2012,4:6816.
62 Zhao J, Yao J, Zhang Y, et al. Effect of thermal treatment on TiO2 nanorod electrodes prepared by the solvothermal method for dye-sensitized solar cells: Surface reconfiguration and improved electron transport[J]. J Power Sources,2014,255:16.
63 Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269.
64 Hou X, Wang C W, Zhu W D, et al. Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect[J]. Solid State Sci,2014,29:27.
65 Nam S H, Shim H S, Kim Y S, et al. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries[J]. ACS Appl Mater Interface,2010,2(7):2046.
66 Lin C H, Chao J H, Tsai W J, et al. Effects of electron charge density and particle size of alkali metal titanate nanotube-supported Pt photocatalysts on production of H2 from neat alcohol[J]. Phys Chem Chem Phys,2014,16: 23743.
67 Zhao L, Zhong C, Wang Y L, et al. Ag nanoparticle-decorated 3D flower-like TiO2 hierarchical microstructures composed of ultrathin nanosheets and enhanced photoelectrical conversion properties in dye-sensitized solar cells[J]. J Power Sources,2015,292:49.
68 Rao H S, Wu W Q, Liu Y, et al. CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells[J]. Nano Energy,2014,8:1.
69 Wang X D, Li Z D, Shi J, et al. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts[J]. Chem Rev,2014,114:9346.
70 Li H, Yu Q, Huang Y, et al. Ultra-long rutile TiO2 nanowire arrays for highly efficient dye-sensitized solar cells[J]. ACS Appl Mater Interface,2016,8:13384.
71 Sun Z, Liang M, Chen J. Kinetics of iodine-free redox shuttles in dye-sensitized solar cells: Interfacial recombination and dye regeneration[J]. Acc Chem Res,2015,48:1541.
72 Ohsaki Y,Masaki N, Kitamura T, et al. Dye-sensitized TiO2 nanotube solar cells: Fabrication and electronic characterization[J]. Phys Chem Chem Phys,2005,7:4157.
73 Myahkostupov M, Zamkov M, Castellano F N. Dye-sensitized photovoltaic properties of hydrothermally prepared TiO2 nanotubes[J]. Energy Environ Sci,2011,4:998.
74 Guo W, Xue X, Wang S, et al. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays[J]. Nano Lett,2012,12:2520.
75 Meng L, Ren T, Li C. The control of the diameter of the nanorods prepared by dc reactive magnetron sputtering and the applications for DSSC[J]. Appl Surf Sci,2010,256:3676.
76 Qiu J, Zhuge F, Li X, et al. Coaxial multi-shelled TiO2 nanotube arrays for dye sensitized solar cells[J]. J Mater Chem,2012,22:3549.
77 Zhu J J, Zhao Y L, Zhu L, et al. Synthesis and application of TiO2 single-crystal nanorod arrays grown by multicycle hydrothermal for dye-sensitized solar cells[J]. Chin Phys B,2014,23:629.
78 Liu W, Lu H, Zhang M, et al. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells[J]. Appl Surf Sci,2015,347:214.
79 Chen J, Song W, Hou H, et al. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries[J]. Adv Funct Mater,2015,25:6793.
80 Gu B, Liu Z, Wang X, et al. RF magnetron sputtering synthesis of carbon fibers/ZnO coaxial nanocable microelectrode for electrochemical sensing of ascorbic acid[J]. Mater Lett,2016,181:265.
81 Rayerfrancis A, Bhargav P B, Ahmed N, et al. Structural and optical investigations on seed layer assisted hydrothermally grown ZnO nanorods on flat and textured substrates[J]. Mater Res Express,2016,3(12):125001.
82 Kovácˇ J, Hronec P, Búc D, et al. Study of ZnO nanostructures grown by a hydrothermal process on GaP/ZnO nanowires[J]. Appl Surf Sci,2015,337:254.
83 Mbuyisa P N, Ndwandwe O M, Cepek C. Controlled growth of zinc oxide nanorods synthesised by the hydrothermal method[J]. Thin Solid Films,2015,578:7.
84 Yoo I H, Kalanur S S, Lee S Y, et al. Uniform ZnO nanorod/Cu2O core-shell structured solar cells by bottom-up RF magnetron sputtering[J]. RSC Adv,2016,6(86):82900.
85 Jin E M, Zhao X G, Park J Y, et al. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode[J]. Nanoscale Res Lett,2012,7:1.
86 Naphade R A, Tathavadekar M, Jog J P, et al. Plasmonic light harvesting of dye sensitized solar cells by Au-nanoparticle loaded TiO2 nanofibers[J]. J Mater Chem A,2014,2:975.
87 Kim H, Suh J S. Increasing the surface area of TiO2 nanotube membranes by filling the channels with onion type carbon materials and TiCl4 for dye-sensitized solar cells[J]. RSC Adv,2015,5:74107.
88 Zhang J, Li Q, Li S, et al. An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells[J]. J Power Sources,2014,268:941.
89 Liu G, Peng M, Song W, et al. An 8.07% efficient fiber dye-sensitized solar cell based on a TiO2 micron-core array and multilayer structure photoanode[J]. Nano Energy,2015,11:341.
90 Lv M, Zheng D, Ye M, et al. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells[J]. Energy Environ Sci,2013,6:1615.
91 Yeh M H, Lin L Y, Chou C Y, et al. Preparing core-shell structure of ZnO@TiO2 nanowires through a simple dipping-rinse-hydrolyzation process as the photoanode for dye-sensitized solar cells[J]. Nano Energy,2013,2:609.
92 Williams V O, Jeong N C, Prasittichai C, et al. Fast transporting ZnO-TiO2 coaxial photoanodes for dye-sensitized solar cells based on ALD-modified SiO2 aerogel frameworks[J]. ACS Nano,2012,6:6185.
93 Kakiage K, Aoyama Y, Yano T, et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes[J]. Chem Commun,2015,51(88):15894.
[1] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[2] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[3] 谭海军, 何敬文, 裴海睿, 李和平, 张淑芬, 张淑华. 吩噻嗪和吩噁嗪给电子体在染料敏化太阳能电池中的性能对比分析[J]. 材料导报, 2018, 32(15): 2538-2541.
[4] 康淮,陆轴,钟志有,龙浩. 磁控溅射制备镁镓共掺氧化锌透明半导体薄膜及其性能研究[J]. 《材料导报》期刊社, 2018, 32(11): 1938-1942.
[5] 张睿, 顾晓龙, 庞欢. 两种冠醚环化二硫纶配体的Ni配合物的合成、结构及光电性质研究*[J]. 《材料导报》期刊社, 2017, 31(8): 11-16.
[6] 李昱煜,沈沪江,刘岩,王炜,袁慧慧,谢华清. PEDOT基对电极染料敏化太阳能电池研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 19-25.
[7] 罗军, 沈晓楠, 庞盼, 廖斌, 吴先映, 张旭. MEVVA离子注入铁镍银对DSSCs光电性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 1-6.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed