Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 21-24    https://doi.org/10.11896/j.issn.1005-023X.2017.06.005
  材料研究 |
等离子喷涂法制备Al/TiB2复合电极及电化学性能研究
郭晓亮, 周生刚, 张能锦, 竺培显, 曹勇, 李洪山
昆明理工大学材料科学与工程学院, 昆明 650093
Electrochemical Properties of Plasma Sprayed TiB2-coated Al Composite Electrodes
GUO Xiaoliang, ZHOU Shenggang, ZHANG Nengjin, ZHU Peixian, CAO Yong, LI Hongshan
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 1573KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等离子喷涂法制备出Al/TiB2电极。运用SEM、XRD表征复合电极界面的组织形貌和物相结构,研究在相同送粉电位、喷涂距离条件下不同喷涂功率对复合电极界面电阻率及电化学性能的影响。结果表明:等离子喷涂法制备的Al/TiB2复合电极表面涂层的物相组成为TiB2。喷涂后的TiB2可均匀致密地涂在Al基体表面,但并未与Al发生界面反应,而是形成机械式结合。当喷涂功率、送粉电位和喷涂距离分别为34 kW、12 V、10 cm时试样界面电阻率最小为1.22×10-6 Ω·cm,较Ti/Al电极降低66%,腐蚀电流密度 (1.47×10-4 A/cm2)较Ti/Al电极降低81%,腐蚀电压(-0.579 V)较Ti/Al电极增加35%,其耐腐蚀性能达到最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭晓亮
周生刚
张能锦
竺培显
曹勇
李洪山
关键词:  等离子喷涂  铝基  二硼化钛  涂层阳极    
Abstract: The Al electrode substrates were covered with TiB2 by plasma spraying to form a series of composite electrodes va-ried in spraying power, whose interface microstructures and phase structures were characterized by XRD and SEM. Under the same powder-feeding potential and spraying distance, the effect of spraying power on composite electrode′s electrochemical performance was analyzed. The results showed that the phase compositions of the electrodes′ surface coatings prepared by plasma spraying were TiB2. The sprayed TiB2 can evenly and densely coat on surface of Al substrate, but no interface reaction with Al occurred and binding mode is mechanical binding. When spraying power, powder-feeding potential, and spraying distance were 34 kW, 12 V and 10 cm, respectively, the sprayed electrode had the best corrosion resistance, as its interfacial resistivity 1.22×10-6 Ω·cm was the lowest (66% lower than that of Ti/Al electrode), and had a corrosion current density of 1.47×10-4 A/cm2 (81% lower than that of Ti/Al electrode) and a corrosion voltage of -0.579 V (35% higher than that of Ti/Al electrode).
Key words:  plasma spraying    aluminum base    titanium diboride    anodic coating
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG179  
基金资助: 国家自然科学基金(51201080;51264025);云南省重点新产品计划项目(2014BA011)
通讯作者:  周生刚:男,1983年生,博士,副教授,硕士研究生导师,研究方向为金属基层状复合功能材料,E-mail:zsgandyliu@126.com   
作者简介:  郭晓亮:男,1991年生,硕士研究生,研究方向为金属基层状复合功能材料,E-mail:guoxl2014@126.com
引用本文:    
郭晓亮, 周生刚, 张能锦, 竺培显, 曹勇, 李洪山. 等离子喷涂法制备Al/TiB2复合电极及电化学性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 21-24.
GUO Xiaoliang, ZHOU Shenggang, ZHANG Nengjin, ZHU Peixian, CAO Yong, LI Hongshan. Electrochemical Properties of Plasma Sprayed TiB2-coated Al Composite Electrodes. Materials Reports, 2017, 31(6): 21-24.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.005  或          http://www.mater-rep.com/CN/Y2017/V31/I6/21
1 Shon H K, Phuntsho S, Vigneswaran S, et al. Preparation of tita-nium dioxide nanoparticles from electrocoagulated sludge using sacrificial titanium electrodes[J]. Environ Sci Technol,2010,44(14):5553.
2 Simon E Moulton, Joseph N Barisci, Andrew Bath, et al. Investigation of lg.G adsorption and the effect on electrochemical responses at titanium dioxide electrode[J]. Langmuir,2005,21(1):316.
3 Kohei Uosaki, Ryu Yoneda, Hideaki Kita. Effect of platinization on the electrochemical behavior oftitanium dioxide electrode in aqueous solutions[J].J Phys Chem,1985,89(19):4042.
4 张招贤,赵国鹏,罗小军,等.钛电极学导论[M].北京:冶金工业出版社,2008.
5 Han C H,Zhu P X,Ma H Y,et al. Performance of the Ti-Al composite electrode materials prepared by the hot-pressing duffusion bonding method[J].Acta Mater Compos Sin,2012,29(6):129(in Chinese).
韩朝辉,竺培显,马会宇,等.热压扩散焊接法制备Ti-Al复合电极材料及性能[J]. 复合材料学报,2012,29(6):129.
6 Cheng H C,Li Z X,Yang W H,et al. Study on Ni-B coated TiB2 by electroless plating[J].Trans Mater Heat Treat,2006,27(6):37(in Chinese).
程汉池,栗卓新,杨伟华,等. Ni-B合金包覆TiB2粉的研究[J].材料热处理学报,2006,27(6):37.
7 Lotfil B,Sadeghian Z,et al.Microstructure and sliding wear beha-viour of Ni(Cr)-TiB2 coatings deposited by HVOF spraying of SHS powders[J].Trans Mater Heat Treat,2004,25(5):1183.
8 Cheng H C,Li Z X,Li H,et al. Research progress of thermal spraying TiB2 coatings[J]. Heat Treatment Metals,2007,32(12):17(in Chinese).
程汉池,栗卓新,李红,等. 热喷涂制备TiB2涂层的研究进展[J]. 金属热处理,2007,32(12):17.
9 Tang H X,Yu X H,Xie G. Research progress of TiB2 cathode coa-ting in aluminium electrobath[J]. Mater Rev,2011,25(S2):203(in Chinese).
唐慧鑫,俞小花,谢刚.铝电解槽阴极TiB2涂层的研究进展[J]. 材料导报,2011,25(专辑18):203.
10 Michael Reinke, Yury Kuzminykh, Patrik Hoffmann. Low temperature chemical vapor deposition using atomic layer deposition chemistry[J]. Chem Mater,2015,27(5):1604.
11 Chen M H,Liu N,Xu Y D. The current research status of metal/ceramic wettability[J]. Cemented Carbide,2002,19(4):199(in Chinese).
陈名海,刘宁,许育东. 金属/陶瓷润湿性的研究现状[J]. 硬质合金,2002,19(4):199.
12 Chen K H,Bao C Y,Liu H W. The wettability of metal/ceramic (on)[J]. Mater Sci Eng,1997,15(3):6(in Chinese).
陈康华,包崇玺,刘红卫. 金属/陶瓷润湿性(上)[J].材料科学与工程,1997,15(3):6.
13 Marc Estruga, Lianyi Chen, Hongseok Choi, et al. Ultrasonic-assisted synthesis of surface-clean TiB2 nanoparticles and their improved dispersion and capture in Al-matrix nanocomposites[J]. ACS Appl Mater Interfaces,2013,5(17):8813.
14 Brown C W. The wettability of TiB2-based cathodes in low-temperature slurry-electrolyte reduction cells[J].JOM,1998,50(5):38.
15 Fang Z,Zhang K,Lü X J,et al. Alkali metals ( K and Na) penetration and its effects on expansion of TiB2-C composite cathode during aluminum electrolysis[J]. Trans Nonferrous Metals Soc China,2013,23(6):1847.
16 Fan N J,Zhu P X,Zhou S G,et al. Performance study of Ti/Ti4O7+TiB2/PbO2 anode material prepared by plasma spraying[J]. Hot Work Technol,2016,45(4):120(in Chinese).
范农杰,竺培显,周生刚,等. 等离子喷涂法制备Ti/Ti4O7+TiB2/PbO2阳极材料的性能研究[J].热加工工艺,2016,45(4):120.
17 Chen X,Ji G C,Wang H T,et al. Influence of HVOF spraying process on properties of TiB2-50Ni coatings[J]. Trans Mater Heat Treat,2013,34(11):156(in Chinese).
陈枭,纪岗昌,王洪涛,等.超音速火焰喷涂工艺对TiB2-50Ni涂层性能的影响[J].材料热处理学报,2013,34(11):156.
[1] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[2] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[3] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[4] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[5] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[6] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[7] 吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
[8] 许慧, 赵洋, 任淑彬, 曲选辉. 真空压力熔渗与热压烧结制备(SiCp+Al2O3f)/2024Al复合材料的组织与拉伸性能分析[J]. 材料导报, 2018, 32(6): 951-956.
[9] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[10] 汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
[11] 胡晓峰, 余昆, 彭大硌, 邓立勋, 王辉虎, 罗平, 谢志雄, 董仕节. 铝基复合材料水解制氢及其水解产物的吸附性能[J]. 材料导报, 2018, 32(21): 3720-3725.
[12] 席小鹏, 王快社, 王文, 彭湃, 乔柯, 余良良. 搅拌摩擦加工制备颗粒增强铝基复合材料的研究现状及展望[J]. 材料导报, 2018, 32(21): 3814-3822.
[13] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[14] 袁野, 王一帆, 侯华, 赵宇宏, 田晋忠. Al-Cu-Fe-Cr准晶增强铝基复合材料的研究[J]. 材料导报, 2018, 32(15): 2635-2639.
[15] 张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed