Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22040149-8    https://doi.org/10.11896/cldb.22040149
  无机非金属及其复合材料 |
铝基催化剂催化水解羰基硫研究进展
朱昌盛1, 赵顺征1,2, 唐晓龙1,2, 高凤雨1,2, 于庆君1,2, 刘俊1,2, 周远松1,2, 温燕凤1, 易红宏1,2,*
1 北京科技大学能源与环境工程学院,北京 100083
2 工业典型污染物资源化处理北京市重点实验室,北京 100083
Research Progress in Catalytic Hydrolysis of Carbonyl Sulfide by Aluminum Based Catalysts
ZHU Changsheng1, ZHAO Shunzheng1,2, TANG Xiaolong1,2, GAO Fengyu1,2, YU Qingjun1,2, LIU Jun1,2, ZHOU Yuansong1,2, WEN Yanfeng1, YI Honghong1,2,*
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
下载:  全 文 ( PDF ) ( 27878KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 羰基硫广泛存在于高炉煤气、焦炉煤气、黄磷尾气和各种工业废气中,对人体健康、工业生产和生态环境都会造成巨大的危害。催化水解法由于效率高、能耗低等特点受到了研究人员的广泛关注,开发催化活性好、稳定性高的水解催化剂成为研究的重点。铝基催化剂是目前工业上应用最多的水解催化剂,其中氧化铝不仅具有表面积大、活性高等特点,而且具有催化活性,而铝基类水滑石由于其独特的结构和优良的性能,同样受到了广泛的研究。但在实际应用中,中毒、失活过快仍是困扰水解催化剂的一大问题。本文介绍了近些年来铝基水解催化剂的相关研究成果,包括目前较为成熟的工业催化剂及含铝类水滑石催化剂,同时介绍了不同金属改性对水解催化剂的影响,解释了羰基硫水解的气氛效应,最后综述水解反应的动力学和机理,旨在为后续高活性、高稳定性水解催化剂的设计与研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱昌盛
赵顺征
唐晓龙
高凤雨
于庆君
刘俊
周远松
温燕凤
易红宏
关键词:  羰基硫  催化水解  铝基催化剂  改性  气氛效应    
Abstract: Carbonyl sulfide is widely found in blast furnace gas, coke oven gas, yellow phosphorus tail gas and various industrial waste gases, which will cause huge harm to human health, industrial production and ecological environment. Catalytic hydrolysis had received wide attention due to its good efficiency and low energy consumption. The development of hydrolysis catalysts with good catalytic activity and high stability has become the focus of research. Aluminum-based catalysts are the most widely used hydrolysis catalysts in industry at present. Among them, alumina not only has large surface area and high activity, but also has catalytic activity. Aluminum-based hydrotalcite has also been widely studied because of its unique structure and excellent performance. However, poisoning and too rapid deactivation are still a major problem that plagues hydrolysis catalysts in practical applications. This paper introduces the relevant research results of aluminum-based hydrolysis catalysts in recent years, including the more mature industrial catalysts and aluminum-containing hydrotalcite catalysts, as well as the effects of different metal modifications on hydrolysis catalysts and explains the atmospheric effects of carbonyl sulfur hydrolysis. Finally, the kinetics and mechanism of the hydrolysis reaction are reviewed, which can provide a reference for the design and research of subsequent hydrolysis catalysts with high activity and high stability.
Key words:  carbonyl sulfide    catalytic hydrolysis    aluminum-based catalyst    modification    atmosphere effect
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  X511  
基金资助: 国家自然科学基金(21876010)
通讯作者:  *易红宏,北京科技大学能源与环境工程学院教授、博士研究生导师。1997年和2000年于昆明理工大学分别获得学士学位和硕士学位,2006年于清华大学获得博士学位,主要从事气态污染物协同净化和典型VOCs净化技术研究。曾入选教育部新世纪优秀人才,获中国有色金属工业科学技术二等奖、中国环境科学学会青年科技奖等。发表SCI论文170余篇; 出版论著6部;授权发明专利30余项,授权实用新型专利10余项。yhhtxl@163.com   
作者简介:  朱昌盛,2020年6月毕业于南昌航空大学,获得工学学士学位。现为北京科技大学能源与环境工程学院硕士研究生,在易红宏教授的指导下进行研究。目前主要的研究领域为高炉煤气中羰基硫的去除。
引用本文:    
朱昌盛, 赵顺征, 唐晓龙, 高凤雨, 于庆君, 刘俊, 周远松, 温燕凤, 易红宏. 铝基催化剂催化水解羰基硫研究进展[J]. 材料导报, 2023, 37(20): 22040149-8.
ZHU Changsheng, ZHAO Shunzheng, TANG Xiaolong, GAO Fengyu, YU Qingjun, LIU Jun, ZHOU Yuansong, WEN Yanfeng, YI Honghong. Research Progress in Catalytic Hydrolysis of Carbonyl Sulfide by Aluminum Based Catalysts. Materials Reports, 2023, 37(20): 22040149-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040149  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22040149
1 He E, Huang G, Fan H, et al. Fuel, 2019, 246, 277.
2 Svoronos P D N, Bruno T J. Industrial & Engineering Chemistry Research, 2002, 41, 5321.
3 Mi J, Chen X, Zhang Q, et al. Chemical Communications, 2019, 55, 9375.
4 Yan Y, Li R, Peng L, et al. Environmental Pollution, 2019, 247, 745.
5 Rhodes C, Riddel S A, West J, et al. Catalysis Today, 2000, 59, 443.
6 Kremser S, Thomason L W, Hobe M V, et al. Reviews of Geophysics, 2016, 54, 278.
7 Zhao S Z, Tang X L, He M, et al. Separation and Purification Technology, 2018, 194, 33.
8 Zhao S Z, Yi H H, Tang X L, et al. Catalysis Today, 2019, 327, 161.
9 Liu N, Wang X Z, Xu W Y, et al. Fuel, 2014, 119, 163.
10 He H, Liu J F, Mu Y J, et al. Environmental Science & Technology, 2005, 39, 9637.
11 Zhang J B, Xiao J B, Liu Y X, et al. Journal of Chemical & Engineering Data, 2010, 55, 5350.
12 Bacsik Z, Hedin N. Langmuir, 2018, 34, 7708.
13 González F A J, Orazi V, Jasen P, et al. Applied Surface Science, 2020, 525, 146331.
14 Uribe-Soto W, Portha J, Commenge J, et al. Renewable and Sustainable Energy Reviews, 2017, 74, 809.
15 Deng L Y, Adams T A. Energy Conversion and Management, 2020, 204, 112315.
16 Dong K, Wang X L. Metals, 2019, 9, 273.
17 Cao R, Ning P, Wang X Q, et al. Fuel, 2022, 310, 122295.
18 Liu Y C, He H, Mu Y J. Atmospheric Environment, 2008, 42, 960.
19 Fan J, Lei J. Anhui Chemical Industry, 2007(4), 3(in Chinese).
范健, 雷军. 安徽化工, 2007(4), 3.
20 Dai X T, Chen Q Y, Qi Y H, et al. Iron & Steel, 2021, 56(12), 153(in Chinese).
戴晓天, 陈乾业, 齐渊洪, 等. 钢铁, 2021, 56(12), 153.
21 Liu Y X. Study on the preparation of moderate carbonyl sulfide hydrolysis catalyst and hydrolysis of carbonyl sulphur. Master’s Thesis, Taiyuan University of Technology, China, 2018(in Chinese).
刘艳霞. 中温羰基硫水解催化剂制备及羰基硫水解性能的研究. 硕士学位论文, 太原理工大学, 2018.
22 Wei L. Preparation and characterization of ultrafine γ-Al2O3 and its application in hydrolysis of COS. Master’s Thesis, Hebei University of Technology, China, 2006(in Chinese).
魏蕾. 超细γ-Al2O3的制备、表征及其在羰基硫水解反应中的应用. 硕士学位论文, 河北工业大学, 2006.
23 Huang G. Study of 3DOM alumina/titania-based catalyst for carbonyl sulfide hydrolysis. Master’s Thesis, Taiyuan University of Technology, China, 2016(in Chinese).
黄冠. 三维有序大孔(3DOM)氧化铝/氧化钛基羰基硫水解催化剂的研究. 硕士学位论文, 太原理工大学, 2016.
24 Jin H K, An Z Y, Li Q C, et al. Energy & Fuels, 2021, 35, 8895.
25 Wei Z, Zhang X, Zhang F L, et al. Environmental Science, 2019, 40(10), 4423(in Chinese).
魏征, 张鑫, 张凤莲, 等. 环境科学, 2019, 40(10), 4423.
26 Guo H B, Tang L H, Li K, et al. RSC Advances, 2015, 5, 20530.
27 Zhao S Z, Yi H H, Tang X L, et al. Ultrasonics Sonochemistry, 2016, 32, 336.
28 Wei Z, Zhang X, Zhang F L, et al. Journal of Hazardous Materials, 2021, 407, 124546.
29 Zhao S Z, Kang D J, Liu Y P, et al. ACS Catalysis, 2020, 10, 11739.
30 Li C H, Guo H X, Tan S S. Journal of Molecular Catalysis, 1994(4), 305(in Chinese).
李春虎, 郭汉贤, 谈世韶. 分子催化, 1994(4), 305.
31 Tan S S, Li C H, Liang S Z, et al. Catalysis Letters, 1991, 8, 155.
32 She C, Shangguan J, Liang L T, et al. Petrochemical Technology, 2009, 38(4), 384(in Chinese).
佘春, 上官炬, 梁丽彤, 等. 石油化工, 2009, 38(4), 384.
33 Xu Y K, Shangguan J, Wang Z X, et al. Journal of Materials Science & Chemical Engineering, 2018, 6, 31.
34 Zhao S Z, Yi H H, Tang X L, et al. Journal of Rare Earths, 2010, 28, 329.
35 Nimthuphariyha K, Usmani A, Grisdanurak N, et al. Chemical Enginee-ring Communications, 2021, 208, 539.
36 Li N L, Zhou W S. Nitrogenous Fertilizer Technology, 2002(4), 15(in Chinese).
李乃良, 周卫生. 小氮肥设计技术, 2002(4), 15.
37 Huang H M, Young N, Williams B P, et al. Catalysis Letters, 2006, 110, 243.
38 Liu Z S, LI J J, Chen C J, et al. Chemical Engineering of Oil & Gas, 2020, 49(4), 14(in Chinese).
刘宗社, 李金金, 陈昌介, 等. 石油与天然气化工, 2020, 49(4), 14.
39 Liu J F, Liu Y C, Xue L, et al. Acta Physico-Chimica Sinica, 2007, 23, 997.
40 Liu Q, Ke M, Yu P, et al. Petrochemical Technology, 2016, 45(5), 552(in Chinese).
刘强, 柯明, 于沛, 等. 石油化工, 2016, 45(5), 552.
41 Wang G. The study of carbonyl sulfide gas removal by catalytic hydrolysis in low temperature. Master’s Thesis, Shanghai Jiao Tong University, China, 2014(in Chinese).
王冠. 催化水解法低温脱除煤气中羰基硫的研究. 硕士学位论文, 上海交通大学, 2014.
42 Sun X, Ruan H T, Song X, et al. RSC Advances, 2018, 8, 6996.
43 Liang M S, Li C H, Guo H X. Journal of Fuel Chemistry and Technology, 2002(4), 347.
梁美生, 李春虎, 郭汉贤. 燃烧化学学报, 2002(4), 347.
44 Zhang Q L, Guo H X. Chinese Journal of Catalysis, 1988(1), 14(in Chinese).
张青林, 郭汉贤. 催化学报, 1988(1), 14.
45 Wang X G. Nitrogenous Fertilizer Technology, 2005(5), 4(in Chinese).
王祥光. 小氮肥设计技术, 2005(5), 4.
46 Zhang G Q, Kan X, Zheng Y, et al. New Journal of Chemistry, 2021, 45, 3535.
47 Guo H X, Miao M Q, Zhang Y Q. Nitrogenous Fertilizer Technology, 1999(3), 18(in Chinese).
郭汉贤, 苗茂谦, 张允强. 小氮肥设计技术, 1999(3), 18.
48 Wang B, Lin Y T, Li Y R, et al. Clean Coal Technology, 2021, 27(5), 233(in Chinese).
王斌, 林玉婷, 李玉然, 等. 洁净煤技术, 2021, 27(5), 233.
49 Qiu J, Ning P, Wang X Q, et al. Frontier of Environmental Science & Engineering, 2016, 10, 11.
50 Tong S. Catalytic hydrolysis of carbon disulfide and carbonyl sulfide. Ph. D. Thesis, Canada University of Alderta, Canada, 1992.
51 Peter W B, Young N C, West J, et al. Catalysis Today, 1999, 49, 99.
52 West J, Peter W B, Young N, et al. Catalysis Communications, 2001, 2, 135.
53 Fiedorow R, Léauté R, Lana I G D. Journal of Catalysis, 1984, 85, 339.
54 Zdrazil M, Kaluza L, GulkvÃÃf¡ D. Catalysis Communications, 2006, 7, 276.
55 Li J W, Wang C M, Zhang Y Z, et al. Industrial Catalysis, 1992(3), 36(in Chinese).
李建伟, 王春梅, 张永战, 等. 化肥与催化, 1992(3), 36.
56 Liang M S, Li C H, Guo H X, et al. Chinese Journal of Catalysis, 2002, 23(4), 357(in Chinese).
梁美生, 李春虎, 郭汉贤, 等. 催化学报, 2002, 23(4), 357.
57 George Z M. Journal of Catalysis, 1974, 32, 261.
58 Akimoto M, Lana I G D. Journal of Catalysis, 1980, 62, 84.
59 Wang H N. Preparation of catalyst and research of kinetics for carbonyl sulfide hydrolysis under moderate temperature. Master’s Thesis, Taiyuan University of Technology, China, 2007(in Chinese).
王会娜. 中温羰基硫水解催化剂制备及其动力学研究. 硕士学位论文, 太原理工大学, 2007.
60 Huisman H M, Vanderberg P, Mos R, et al. Environmental Catalysis American Chemical Society, 1994, 25(32) 393.
61 Liu Y C, Liu J F, He H, et al. Chinese Science Bulletin, 2007, 52, 2063.
[1] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[2] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[3] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[4] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[5] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[6] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[7] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[8] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[9] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[10] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[11] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[12] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[13] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[14] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[15] 郝玮, 王杰, 胥生元, 高文生, 谢克锋. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 22030313-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed