Research Progress in Catalytic Hydrolysis of Carbonyl Sulfide by Aluminum Based Catalysts
ZHU Changsheng1, ZHAO Shunzheng1,2, TANG Xiaolong1,2, GAO Fengyu1,2, YU Qingjun1,2, LIU Jun1,2, ZHOU Yuansong1,2, WEN Yanfeng1, YI Honghong1,2,*
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
Abstract: Carbonyl sulfide is widely found in blast furnace gas, coke oven gas, yellow phosphorus tail gas and various industrial waste gases, which will cause huge harm to human health, industrial production and ecological environment. Catalytic hydrolysis had received wide attention due to its good efficiency and low energy consumption. The development of hydrolysis catalysts with good catalytic activity and high stability has become the focus of research. Aluminum-based catalysts are the most widely used hydrolysis catalysts in industry at present. Among them, alumina not only has large surface area and high activity, but also has catalytic activity. Aluminum-based hydrotalcite has also been widely studied because of its unique structure and excellent performance. However, poisoning and too rapid deactivation are still a major problem that plagues hydrolysis catalysts in practical applications. This paper introduces the relevant research results of aluminum-based hydrolysis catalysts in recent years, including the more mature industrial catalysts and aluminum-containing hydrotalcite catalysts, as well as the effects of different metal modifications on hydrolysis catalysts and explains the atmospheric effects of carbonyl sulfur hydrolysis. Finally, the kinetics and mechanism of the hydrolysis reaction are reviewed, which can provide a reference for the design and research of subsequent hydrolysis catalysts with high activity and high stability.
1 He E, Huang G, Fan H, et al. Fuel, 2019, 246, 277. 2 Svoronos P D N, Bruno T J. Industrial & Engineering Chemistry Research, 2002, 41, 5321. 3 Mi J, Chen X, Zhang Q, et al. Chemical Communications, 2019, 55, 9375. 4 Yan Y, Li R, Peng L, et al. Environmental Pollution, 2019, 247, 745. 5 Rhodes C, Riddel S A, West J, et al. Catalysis Today, 2000, 59, 443. 6 Kremser S, Thomason L W, Hobe M V, et al. Reviews of Geophysics, 2016, 54, 278. 7 Zhao S Z, Tang X L, He M, et al. Separation and Purification Technology, 2018, 194, 33. 8 Zhao S Z, Yi H H, Tang X L, et al. Catalysis Today, 2019, 327, 161. 9 Liu N, Wang X Z, Xu W Y, et al. Fuel, 2014, 119, 163. 10 He H, Liu J F, Mu Y J, et al. Environmental Science & Technology, 2005, 39, 9637. 11 Zhang J B, Xiao J B, Liu Y X, et al. Journal of Chemical & Engineering Data, 2010, 55, 5350. 12 Bacsik Z, Hedin N. Langmuir, 2018, 34, 7708. 13 González F A J, Orazi V, Jasen P, et al. Applied Surface Science, 2020, 525, 146331. 14 Uribe-Soto W, Portha J, Commenge J, et al. Renewable and Sustainable Energy Reviews, 2017, 74, 809. 15 Deng L Y, Adams T A. Energy Conversion and Management, 2020, 204, 112315. 16 Dong K, Wang X L. Metals, 2019, 9, 273. 17 Cao R, Ning P, Wang X Q, et al. Fuel, 2022, 310, 122295. 18 Liu Y C, He H, Mu Y J. Atmospheric Environment, 2008, 42, 960. 19 Fan J, Lei J. Anhui Chemical Industry, 2007(4), 3(in Chinese). 范健, 雷军. 安徽化工, 2007(4), 3. 20 Dai X T, Chen Q Y, Qi Y H, et al. Iron & Steel, 2021, 56(12), 153(in Chinese). 戴晓天, 陈乾业, 齐渊洪, 等. 钢铁, 2021, 56(12), 153. 21 Liu Y X. Study on the preparation of moderate carbonyl sulfide hydrolysis catalyst and hydrolysis of carbonyl sulphur. Master’s Thesis, Taiyuan University of Technology, China, 2018(in Chinese). 刘艳霞. 中温羰基硫水解催化剂制备及羰基硫水解性能的研究. 硕士学位论文, 太原理工大学, 2018. 22 Wei L. Preparation and characterization of ultrafine γ-Al2O3 and its application in hydrolysis of COS. Master’s Thesis, Hebei University of Technology, China, 2006(in Chinese). 魏蕾. 超细γ-Al2O3的制备、表征及其在羰基硫水解反应中的应用. 硕士学位论文, 河北工业大学, 2006. 23 Huang G. Study of 3DOM alumina/titania-based catalyst for carbonyl sulfide hydrolysis. Master’s Thesis, Taiyuan University of Technology, China, 2016(in Chinese). 黄冠. 三维有序大孔(3DOM)氧化铝/氧化钛基羰基硫水解催化剂的研究. 硕士学位论文, 太原理工大学, 2016. 24 Jin H K, An Z Y, Li Q C, et al. Energy & Fuels, 2021, 35, 8895. 25 Wei Z, Zhang X, Zhang F L, et al. Environmental Science, 2019, 40(10), 4423(in Chinese). 魏征, 张鑫, 张凤莲, 等. 环境科学, 2019, 40(10), 4423. 26 Guo H B, Tang L H, Li K, et al. RSC Advances, 2015, 5, 20530. 27 Zhao S Z, Yi H H, Tang X L, et al. Ultrasonics Sonochemistry, 2016, 32, 336. 28 Wei Z, Zhang X, Zhang F L, et al. Journal of Hazardous Materials, 2021, 407, 124546. 29 Zhao S Z, Kang D J, Liu Y P, et al. ACS Catalysis, 2020, 10, 11739. 30 Li C H, Guo H X, Tan S S. Journal of Molecular Catalysis, 1994(4), 305(in Chinese). 李春虎, 郭汉贤, 谈世韶. 分子催化, 1994(4), 305. 31 Tan S S, Li C H, Liang S Z, et al. Catalysis Letters, 1991, 8, 155. 32 She C, Shangguan J, Liang L T, et al. Petrochemical Technology, 2009, 38(4), 384(in Chinese). 佘春, 上官炬, 梁丽彤, 等. 石油化工, 2009, 38(4), 384. 33 Xu Y K, Shangguan J, Wang Z X, et al. Journal of Materials Science & Chemical Engineering, 2018, 6, 31. 34 Zhao S Z, Yi H H, Tang X L, et al. Journal of Rare Earths, 2010, 28, 329. 35 Nimthuphariyha K, Usmani A, Grisdanurak N, et al. Chemical Enginee-ring Communications, 2021, 208, 539. 36 Li N L, Zhou W S. Nitrogenous Fertilizer Technology, 2002(4), 15(in Chinese). 李乃良, 周卫生. 小氮肥设计技术, 2002(4), 15. 37 Huang H M, Young N, Williams B P, et al. Catalysis Letters, 2006, 110, 243. 38 Liu Z S, LI J J, Chen C J, et al. Chemical Engineering of Oil & Gas, 2020, 49(4), 14(in Chinese). 刘宗社, 李金金, 陈昌介, 等. 石油与天然气化工, 2020, 49(4), 14. 39 Liu J F, Liu Y C, Xue L, et al. Acta Physico-Chimica Sinica, 2007, 23, 997. 40 Liu Q, Ke M, Yu P, et al. Petrochemical Technology, 2016, 45(5), 552(in Chinese). 刘强, 柯明, 于沛, 等. 石油化工, 2016, 45(5), 552. 41 Wang G. The study of carbonyl sulfide gas removal by catalytic hydrolysis in low temperature. Master’s Thesis, Shanghai Jiao Tong University, China, 2014(in Chinese). 王冠. 催化水解法低温脱除煤气中羰基硫的研究. 硕士学位论文, 上海交通大学, 2014. 42 Sun X, Ruan H T, Song X, et al. RSC Advances, 2018, 8, 6996. 43 Liang M S, Li C H, Guo H X. Journal of Fuel Chemistry and Technology, 2002(4), 347. 梁美生, 李春虎, 郭汉贤. 燃烧化学学报, 2002(4), 347. 44 Zhang Q L, Guo H X. Chinese Journal of Catalysis, 1988(1), 14(in Chinese). 张青林, 郭汉贤. 催化学报, 1988(1), 14. 45 Wang X G. Nitrogenous Fertilizer Technology, 2005(5), 4(in Chinese). 王祥光. 小氮肥设计技术, 2005(5), 4. 46 Zhang G Q, Kan X, Zheng Y, et al. New Journal of Chemistry, 2021, 45, 3535. 47 Guo H X, Miao M Q, Zhang Y Q. Nitrogenous Fertilizer Technology, 1999(3), 18(in Chinese). 郭汉贤, 苗茂谦, 张允强. 小氮肥设计技术, 1999(3), 18. 48 Wang B, Lin Y T, Li Y R, et al. Clean Coal Technology, 2021, 27(5), 233(in Chinese). 王斌, 林玉婷, 李玉然, 等. 洁净煤技术, 2021, 27(5), 233. 49 Qiu J, Ning P, Wang X Q, et al. Frontier of Environmental Science & Engineering, 2016, 10, 11. 50 Tong S. Catalytic hydrolysis of carbon disulfide and carbonyl sulfide. Ph. D. Thesis, Canada University of Alderta, Canada, 1992. 51 Peter W B, Young N C, West J, et al. Catalysis Today, 1999, 49, 99. 52 West J, Peter W B, Young N, et al. Catalysis Communications, 2001, 2, 135. 53 Fiedorow R, Léauté R, Lana I G D. Journal of Catalysis, 1984, 85, 339. 54 Zdrazil M, Kaluza L, GulkvÃÃf¡ D. Catalysis Communications, 2006, 7, 276. 55 Li J W, Wang C M, Zhang Y Z, et al. Industrial Catalysis, 1992(3), 36(in Chinese). 李建伟, 王春梅, 张永战, 等. 化肥与催化, 1992(3), 36. 56 Liang M S, Li C H, Guo H X, et al. Chinese Journal of Catalysis, 2002, 23(4), 357(in Chinese). 梁美生, 李春虎, 郭汉贤, 等. 催化学报, 2002, 23(4), 357. 57 George Z M. Journal of Catalysis, 1974, 32, 261. 58 Akimoto M, Lana I G D. Journal of Catalysis, 1980, 62, 84. 59 Wang H N. Preparation of catalyst and research of kinetics for carbonyl sulfide hydrolysis under moderate temperature. Master’s Thesis, Taiyuan University of Technology, China, 2007(in Chinese). 王会娜. 中温羰基硫水解催化剂制备及其动力学研究. 硕士学位论文, 太原理工大学, 2007. 60 Huisman H M, Vanderberg P, Mos R, et al. Environmental Catalysis American Chemical Society, 1994, 25(32) 393. 61 Liu Y C, Liu J F, He H, et al. Chinese Science Bulletin, 2007, 52, 2063.