Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11003-11008    https://doi.org/10.11896/cldb.19030261
  材料与可持续发展(三)——环境友好材料与环境修复材料* |
改性凹凸棒土吸附剂的制备及对水中Cr(Ⅵ)的吸附机理
王家宏1,2, 陈瑶1,2, 孙彤彤1,2
1 陕西科技大学环境科学与工程学院,西安 710021
2 陕西省无机材料绿色制备与功能化重点实验室,西安 710021
Preparation of Modified Attapulgite Adsorbent and Its Adsorption Mechanism for Aqueous Cr(Ⅵ)
WANG Jiahong1,2, CHEN Yao1,2, SUN Tongtong1,2
1 College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021,China
2 Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an 710021,China
下载:  全 文 ( PDF ) ( 3521KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过γ-(2,3-环氧丙氧) 丙基三甲氧基硅烷偶联剂将四乙烯五胺(TEPA)修饰在凹凸棒土(ATP)表面,制备TEPA改性ATP复合材料(TEPA-ATP)。通过FTIR、XRD、SEM、TGA、Zeta、XPS和元素分析等手段对复合材料进行表征分析,并系统研究复合材料对水体中Cr(Ⅵ)的吸附性能。结果表明,TEPA已经成功修饰在ATP表面,并对水体中Cr(Ⅵ)有很好的去除效果,其吸附等温线符合Langmuir模型,饱和吸附量为270.8 mg/g,吸附动力学符合拟二级动力学模型。TEPA-ATP对Cr(Ⅵ)的吸附能力随着pH值的升高而降低。Cl-对TEPA-ATP吸附Cr(Ⅵ)几乎没有影响,而PO43-会大幅降低TEPA-ATP对Cr(Ⅵ)的吸附能力。结合吸附实验结果和XPS表征分析可知,TEPA-ATP吸附剂主要是通过吸附和化学还原作用去除水体中的Cr(Ⅵ)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家宏
陈瑶
孙彤彤
关键词:  四乙烯五胺  改性凹凸棒土  六价铬  吸附    
Abstract: Tetraethylenepentamine modified attapulgite (TEPA-ATP) was prepared by grafting tetraethylenepentamine (TEPA) on the surface of attapulgite (ATP) by γ-(2,3-epoxypropylene oxide) propyltrimethoxysilane. The structure and surface properties of synthesized composites were characterized by Fourier-transformed infrared spectroscopy (FRIR), X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA), Zeta potential (Zeta), X-ray photoelectron spectroscopy (XPS) and elemental analysis, and their adsorption capability for aqueous Cr(Ⅵ) was also conducted. Characterized results indicate that tetraethylenepentamine has been successfully loaded on the surface of attapulgite, and TEPA-ATP exhibits high adsorption capacity for aqueous Cr(Ⅵ). The adsorption isotherm can be fitted by Langmuir model, and the maximum adsorption capacity in tested range for TEPA-ATP was 270.8 mg/g. The adsorption kinetics can be well described by the pseudo-second-order kinetic model. Adsorption amount of Cr(Ⅵ) onto TEPA-ATP decreased with increasing pH. Cl- has little effect on the adsorption of Cr(Ⅵ) by TEPA-ATP, and PO43- can greatly reduce the Cr(Ⅵ) adsorption on TEPA-ATP. From the adsorption tests and XPS analysis, the adsorption coupled chemical reduction mechanism contributes to the enhanced Cr(Ⅵ) adsorption on TEPA-ATP.
Key words:  tetraethylenepentamine    modified attapulgite    chromium VI    adsorbents
                    发布日期:  2020-05-13
ZTFLH:  TQ424  
基金资助: 国家自然科学基金项目(21677092);陕西省教育厅专项(15JK1095)
通讯作者:  Wangjiahong@sust.edu.cn   
作者简介:  王家宏,教授,博士研究生导师。主要从事工业水污染控制、环境功能材料等方面的研究。目前,在研国家自然科学基金等项目4项,在国内外重要期刊发表学术论文50余篇。
引用本文:    
王家宏, 陈瑶, 孙彤彤. 改性凹凸棒土吸附剂的制备及对水中Cr(Ⅵ)的吸附机理[J]. 材料导报, 2020, 34(11): 11003-11008.
WANG Jiahong, CHEN Yao, SUN Tongtong. Preparation of Modified Attapulgite Adsorbent and Its Adsorption Mechanism for Aqueous Cr(Ⅵ). Materials Reports, 2020, 34(11): 11003-11008.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030261  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11003
1 Thevenon F, Graham N D, Chiaradia M, et al. Science of the Total Environment, 2011, 412(61), 239.
2 Pen-Mouratov S, Shukurov N, Steinberger Y. Environmental Pollution, 2008, 152(1), 172.
3 Shams K M, Tichy G, Sager M, et al. Water Air & Soil Pollution, 2009, 199(1-4), 123.
4 Zhang J D, Li S. Journal of Occupational & Environmental Medicine, 1997, 39(4), 315.
5 Pugh C T, Palmer T T, Carr P A. Journal of Chemical Health & Safety, 2008, 15(3), 25.
6 Almaguer-Busso G, Velasco-Martínez G, Carreño-Aguilera G, et al. Electrochemistry Communications, 2009, 11(6), 1097.
7 Xu G R, Wang J N, Li C J. Chemical Engineering Journal, 2012, 198-199(2), 310.
8 Pradhan D, Sukla L B, Sawyer M, et al. Journal of Industrial & Engineering Chemistry, 2017, 55, 1.
9 Yanan C, Dong A, Sainan S, et al. Materials, 2018, 11(2), 269.
10 Liu W, Yang L, Xu S, et al. RSC Advances, 2018, 8(27), 15087.
11 Yi Y, Lv J, Liu Y, et al. Journal of Molecular Liquids, 2017, 225, 28.
12 Wu X, Xiong X, Brunetti G, et al. RSC Advances, 2017, 7(85), 53932.
13 Tarasevich Y I, Trifonov M Y, Ostapenko V T, et al. Journal of Water Chemistry & Technology, 2016, 38(6), 327.
14 Franguelli F P, Tannous K, Coppi C C. Chemical Engineering Communications, DOI:10.1080/00986445.2018.1557154.
15 Liu Y, Chen H, Zhang J, et al. Journal of Composite Materials, 2013, 47(8), 969.
16 Xu W B, He P S. Polymer Engineering & Science, 2010, 41(11), 1903.
17 Kaygun A K, Eral M, Erenturk S A. Journal of Radioanalytical & Nuc-lear Chemistry, 2017, 311(2), 1459.
18 Liu W, Yang T, Xu J, et al. Environmental Progress & Sustainable Energy, 2015, 34(2), 437.
19 Xie H L, Huang X X. Journal of Chongqing University of Technology (Natural Science), 2019, 33(4), 88 (in Chinese).
谢焕玲,黄小雪.重庆理工大学学报(自然科学),2019,33(4),88.
20 Mu B, Wang A Q. Journal of Materials Chemistry A, 2015, 3(1), 281.
21 Shi Y, Zhang Q, Feng L, et al. Korean Journal of Chemical Engineering, 2014, 31(5), 821.
22 Peng G W, Ding D X, Xiao F Z, et al. Journal of Radioanalytical & Nuclear Chemistry, 2014, 301(3), 781.
23 Xu Z, Wei L, Xiong Z, et al. Desalination & Water Treatment, 2016, 57(15), 7054.
24 Pan Y, Cai P, Farmahini-Farahani M, et al. Applied Surface Science, 2016, 385, 333.
25 Mansri A, Benabadji K I, Desbrières J, et al. Desalination, 2009, 245(1), 95.
26 Peng W, Xie Z, Cheng G, et al. Journal of Hazardous Materials, 2015, 294, 9.
27 Gupta A, Jain R, Gupta D C. Reactive & Functional Polymers, 2015, 93, 22.
28 Liu Y, Jin X, Chen Z. Science of the Total Environment, 2018, 627, 470.
29 Chen Y, Xu H, Wang S, et al. RSC Advances, 2014, 4(34), 17805.
30 Ghosh A, Basu T, Manna B, et al. Journal of Environmental Chemical Engineering, 2015, 3(1), 565.
31 Wang D, Zhang G, Zhou L, et al. Langmuir, 2017, 33(28), 7007.
32 Xing Y Q, Chen X M, Wang D H. Environmental Science & Technology, 2007, 41(4), 1439.
[1] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[2] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[3] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[4] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[5] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[6] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[7] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[8] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
[9] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[10] 黄建成, 丁冬, 李玉婷, 张慧芳, 刘海宁, 胡耀强, 叶秀深, 吴志坚. 松针基碳电极的制备及对碱/碱土金属离子的电吸附[J]. 材料导报, 2020, 34(12): 12015-12019.
[11] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[12] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[13] 孙艳兵, 吕日文, 韩雪雯, 钟玮鸿, 黄剑, 刘畅, 戴荧, 曹小红. 铀(Ⅵ)在卟啉基MOF上的吸附行为[J]. 材料导报, 2020, 34(10): 10108-10113.
[14] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[15] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed