Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21050108-14    https://doi.org/10.11896/cldb.21050108
  金属与金属基复合材料 |
纳米孪晶强化合金制备技术与力学性能研究进展
韩基鸿1, 张洋1,*, 马亚玺1, 刘力源1, 杨忠波2, 张中武1,*
1 哈尔滨工程大学材料科学与化学工程学院,超轻材料与表面技术教育部重点实验室,哈尔滨 150001
2 中国核动力研究设计院核燃料及材料国家级重点实验室,成都 610041
Research Progress in the Preparation Techniques and Mechanical Properties of Nanotwin Strengthened Alloys
HAN Jihong1, ZHANG Yang1,*, MA Yaxi1, LIU Liyuan1, YANG Zhongbo2, ZHANG Zhongwu1,*
1 Key Laboratory of Ultralight Materials and Surface Technology of Ministry of Education, School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 National Key Laboratory of Nuclear Fuel and Materials, China Nuclear Power Research and Design Institute, Chengdu 610041, China
下载:  全 文 ( PDF ) ( 25391KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,纳米孪晶强化由于在提高合金强度的同时还保持良好塑性的特点而受到研究者们的广泛关注。在纳米孪晶强化中,孪晶界是位错运动的二维界面障碍,这种界面障碍能够通过减少位错平均自由程来提升合金的加工硬化率和抗拉强度。此外,孪晶片层厚度与强化效果遵循Hall-Petch关系,孪晶片层厚度越小意味着孪晶界的密度越高,孪晶界和位错的相互作用将更加频繁。纳米孪晶强化技术已经被成功应用于多种合金体系。本文重点分析研究了高熵合金、TWIP钢、铝合金、铜合金和不锈钢中纳米孪晶强化技术的应用情况。首先,围绕纳米级变形孪晶和纳米级生长孪晶介绍了纳米孪晶的形成机理与制备方法。制备纳米级变形孪晶时,通常需要驱动肖克莱不全位错的运动;制备纳米级生长孪晶则需要控制微观局部应力集中和应力松弛,应力松弛使局部应力得到释放,进而形成低能的纳米级生长孪晶。然后,归纳了层错能对纳米孪晶形成的影响,概述了几种合金元素对层错能的影响规律,总结了评估层错能的四种方法,分析了温度和应变速率协调孪生机制的一般规律,即如何协调滑移-孪生两种机制的竞争关系,因此制备纳米孪晶需要协调好合金体系、层错能、温度、应变速率与孪生应力之间的关系。最后,讨论了纳米孪晶强化在力学性能方面的研究进展,与具有常规结构的材料相比,具有纳米孪晶结构的材料通常表现出更优异的力学性能,尤其是强塑性和断裂韧性。纳米孪晶甚至有望优化其他性能,将纳米孪晶引入到合金中有望为材料性能优化提供更多的机会。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩基鸿
张洋
马亚玺
刘力源
杨忠波
张中武
关键词:  层错能  温度  应变速率  孪生应力  纳米孪晶    
Abstract: In recent years, nanotwin strengthening has received extensive attention because of its ability to increase alloy strength while maintaining good plasticity. In nanotwin strengthening, a twin boundary is a two-dimensional interface obstacle for the movement of dislocations. This interface obstacle can improve the work-hardening rate and tensile strength by reducing the mean free path of dislocations. In addition, the thickness of the twin layer and the strengthening effect follow the Hall-Petch relationship. The thinner the twin layer, the higher is the density of the twin boundaries, and thus, the more frequent is the interaction between the twin boundaries and dislocations. This paper summarized and analyzed the applications of nanotwin strengthening in various alloy systems, including high-entropy alloys, TWIP steels, aluminum alloys, copper alloys and stainless steels. Firstly, the formation mechanism and preparation method of nanoscale deformation twins and nanoscale growth twins are introduced.During the preparation of deformation nanotwins, the movement of Shockley partial dislocations is generally necessary, and the preparation of growth nanotwins requires controlling micro-local stress concentration and stress relaxation. Stress relaxation can release local stress and form low-energy-growth nanotwins. Subsequently, the influence of the stacking fault energy (SFE) on the formation of nanotwins is analyzed. The influence of several alloying elements on the SFE was summarized. Four methods for calculating the SFE were reviewed. Moreover, the general mechanisms of temperature-and strain-rate-coordinated twinning were analyzed, that is, how to coordinate the competition between slip and twinning mechanism. The results show that the preparation of nanotwins requires coordinating the relationship between the alloy system, SFE, temperature, strain rate and twin stress. Finally, the paper discusses the research progress of nanotwin strengthening in terms of mechanical properties. Compared with metals with conventional structures, materials with nanotwins generally exhibit better mechanical properties, especially strength, plasticity and fracture toughness. Nanotwins are also expected to optimize other properties, and the introduction of nanotwins into alloys is expected to provide more opportunities for performance optimization.
Key words:  stacking fault energy    temperature    strain rate    twin stress    nanotwin
发布日期:  2023-01-03
ZTFLH:  TG115  
基金资助: 国家重点研发计划(2018YFE0115800);中核集团青年英才计划菁英项目(CNNC2019YTEP-HEU01)
通讯作者:  zhangyang0115@hrbeu.edu.cn;zwzhang@hrbeu.edu.cn   
作者简介:  韩基鸿,2018年本科毕业于黑龙江工程学院,2020级哈尔滨工程大学硕博连读生,研究方向为纳米孪晶和纳米相强化高熵合金及其辐照效应。
张洋,博士,硕士研究生导师,哈尔滨工程大学副教授。2015年12月博士毕业于山东大学,2014年11月至2016年9月期间在美国宾夕法尼亚州立大学作为联合培养博士研究生和博士后,2016年11月入职哈尔滨工程大学。近五年在国际期刊发表SCI论文20余篇,其中2篇被选为期刊封面文章。研究方向为新型耐辐照核结构材料开发、纳米相强化与层错能调控技术及应用、金属材料动态力学性能等。
张中武,博士,哈尔滨工程大学教授、博士研究生导师,黑龙江省“龙江学者”讲座教授,黑龙江省杰出青年科学基金获得者。获得中国产学研合作创新成果二等奖。获授权专利17项。在国际期刊,如Science Advances、Acta Materialia、International Journal of Plasticity等刊物上发表SCI论文80余篇。在国际学术会议上做包括主题报告(keynote)和邀请报告(invited)在内的学术报告40余篇次,组织国际会议3次。其中以宣讲人身份做大会报告3次、主题报告5次、邀请报告15次。2012年被遴选为美国橡树岭国家实验室网站封面人物,2015年被遴选为科学中国人(2014)年度人物(化工冶金与材料领域)。 研究方向为纳米相强化技术及应用、层错能调控合金设计及变形机制、船舶海工及核能应用新型金属材料、小角中子散射和三维原子探针在合金中的应用等。
引用本文:    
韩基鸿, 张洋, 马亚玺, 刘力源, 杨忠波, 张中武. 纳米孪晶强化合金制备技术与力学性能研究进展[J]. 材料导报, 2022, 36(24): 21050108-14.
HAN Jihong, ZHANG Yang, MA Yaxi, LIU Liyuan, YANG Zhongbo, ZHANG Zhongwu. Research Progress in the Preparation Techniques and Mechanical Properties of Nanotwin Strengthened Alloys. Materials Reports, 2022, 36(24): 21050108-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050108  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21050108
1 Li X Y, Lu K. Science, 2019, 364, 733.
2 Olivetti E A, Cullen J M. Science, 2018, 360, 1396.
3 Li X Y, Lu K. Nature Materials, 2017, 16, 700.
4 Lu K. Nature Reviews Materials, 2016, 1, 1.
5 Liddicoat P V, Liao X Z, Zhao Y, et al. Nature Communications, 2010, 1, 63.
6 Wang H T, Tao N R, Lu K. Acta Materialia, 2012, 60, 4027.
7 Zhang Y, Tao N R, Lu K. Acta Materialia, 2011, 59, 6048.
8 Zhang B B, Tao N R, Lu K. Scripta Materialia, 2017, 129, 39.
9 You Z S, Lu L, Lu K. Acta Materialia, 2011, 59, 6927.
10 Yi H Y, Yan F K, Tao N R, et al. Scripta Materialia, 2016, 114, 133.
11 Yi H Y, Yan F K, Tao N R, et al. Materials Science and Engineering: A, 2015, 647, 152.
12 Yan F K, Liu G Z, Tao N R, et al. Acta Materialia, 2012, 60, 1059.
13 Yan F, Li Q, Tao N R. Scripta Materialia, 2018, 142, 15.
14 Xiao G H, Tao N R, Lu K. Scripta Materialia, 2011, 65, 119.
15 Sun L X, Tao N R, Lu K. Scripta Materialia, 2015, 99, 73.
16 Shen Y F, Lu L, Lu Q H, et al. Scripta Materialia, 2005, 52, 989.
17 Lu K, Yan F K, Wang H T, et al. Scripta Materialia, 2012, 66, 878.
18 Lu K, Lu L, Suresh S. Science, 2009, 324, 349.
19 Zhang X, Misra A. Scripta Materialia, 2012, 66, 860.
20 Lu L, Shen Y, Chen X, et al. Science, 2004, 304, 422.
21 He J Y, Wang H, Huang H L, et al. Acta Materialia, 2016, 102, 187.
22 Chen Y T, Yeh A C, Li M Y, et al. Materials & Design, 2017, 119, 235.
23 Liang Y J, Wang L, Wen Y, et al. Nature Communications, 2018, 9, 4063.
24 Jiao Z B, Luan J H, Miller M K, et al. Acta Materialia, 2015, 97, 58.
25 Peng J, Li Z, Fu L, et al. Journal of Alloys and Compounds, 2019, 803, 491.
26 Li Y, Yan W, Cotton J D, et al. Materials & Design, 2015, 82, 56.
27 Wang Y, Sun J, Jiang T, et al. Acta Materialia, 2018, 158, 247.
28 Jiao Z B, Luan J H, Miller M K, et al. Acta Materialia, 2015, 84, 283.
29 Ming K, Bi X, Wang J. Scripta Materialia, 2017, 137, 88.
30 Zhang L, Zhou Y, Jin X, et al. Materials Science and Engineering: A, 2018, 732, 186.
31 Xu S S, Zhao Y, Chen D, et al. International Journal of Plasticity, 2019, 113, 99.
32 Xu S S, Zhao Y, Tong X, et al. Journal of Alloys and Compounds, 2017, 712, 573.
33 Zhang K, Liu P, Li W, et al. Materials Science and Engineering: A, 2018, 716, 87.
34 Jiang S, Wang H, Wu Y, et al. Nature, 2017, 544, 460.
35 Chen A, Liu J, Wang H, et al. Materials Science and Engineering: A, 2016, 667, 179.
36 Li J, Cao Y, Gao B, et al. Journal of Materials Science, 2018, 53, 10442.
37 Wang J, Yang H, Huang H, et al. Materials Science and Engineering: A, 2020, 796, 139974.
38 Slone C E, Miao J, George E P, et al. Acta Materialia, 2019, 165, 496.
39 Deng H W, Xie Z M, Zhao B L, et al. Materials Science and Engineering: A, 2019, 744, 241.
40 Ming K, Bi X, Wang J. International Journal of Plasticity, 2019, 113, 255.
41 Gu J, Ni S, Liu Y, et al. Materials Science and Engineering: A, 2019, 755, 289.
42 Xiong T, Zheng S J, Zhou Y T, et al. Materials Science and Engineering: A, 2018, 720, 231.
43 Fu Z Q, Jiang L, Wardini J L, et al. Science Advances, 2018, 4, eaat8712.
44 ZhuT, Gao H. Scripta Materialia, 2012, 66, 843.
45 Jin Z H, Gumbsch P, Albe K, et al. Acta Materialia, 2008, 56, 1126.
46 Zhang B B, Yan F K, Zhao M J, et al. Acta Materialia, 2018, 151, 310.
47 Kumar G V S, Mangipudi K R, Sastry G V S, et al. Scientific Reports, 2020, 10, 354.
48 Bouaziz O, Scott C P, Petitgand G. Scripta Materialia, 2009, 60, 714.
49 Bouaziz O, Barbier D. Journal of Nanoscience and Nanotechnology, 2012, 12, 8732.
50 Wang S J, Jozaghi T, Karaman I, et al. Materials Science and Engineering: A, 2017, 694, 121.
51 Anderoglu O, Misra A, Wang H, et al. Journal of Applied Physics, 2008, 103, 094322.
52 Haase C, Ingendahl T, Güvenç O, et al. Materials Science and Engineering: A, 2016, 649, 74.
53 Wu W, Guo L, Guo B, et al. Materials Science and Engineering: A, 2019, 759, 574.
54 Xiao X, Song D, Chu H, et al. International Journal of Plasticity, 2015, 74, 110.
55 Xiong L, You Z S, Qu S D, et al. Acta Materialia, 2018, 150, 130.
56 Wei Y, Li Y, Zhu L, et al. Nature Communications, 2014, 5, 3580.
57 Zhang Y, Wang J, Shan H, et al. Scripta Materialia, 2015, 108, 35.
58 Li S, Zhu Q, Zheng B, et al. Materials Science and Engineering: A, 2019, 758, 1.
59 Sun F L, Gao L Y, Liu Z Q, et al. Journal of Materials Science & Technology, 2018, 34, 1885.
60 Cheng G, Li H, Xu G, et al. Scientific Reports, 2017, 7, 12393.
61 Valentino G M, Shetty P P, Chauhan A, et al. Scripta Materialia, 2020, 186, 247.
62 Sathiyamoorthi P, Moon J, Bae J W, et al. Scripta Materialia, 2019, 163, 152.
63 Roy B, Das J. Scientific Reports, 2017, 7, 17512.
64 Huang C X, Hu W P, Wang Q Y, et al. Materials Research Letters, 2014, 3, 88.
65 Sawaguchi T, Bujoreanu L G, Kikuchi T, et al. Scripta Materialia, 2008, 59, 826.
66 Beyerlein I J, Zhang X, Misra A. Annual Review of Materials Research, 2014, 44, 329.
67 Zhu Y T, Liao X Z, Wu X L. Progress in Materials Science, 2012, 57, 1.
68 Huang C X, Wang K, Wu S D, et al. Acta Materialia, 2006, 54, 655.
69 Wang J, Huang H. Applied Physics Letters, 2004, 85, 5983.
70 Yamakov V, Wolf D, Phillpot S, et al. Acta Materialia, 2002, 50, 5005.
71 Laplanche G, Kostka A, Reinhart C, et al. Acta Materialia, 2017, 128, 292.
72 Remy L. Metallurgical Transactions A, 1981, 12, 387.
73 Lingk C, Gross M E. Journal of Applied Physics, 1998, 84, 5547.
74 Chan T C, Lin Y M, Tsai H W, et al. Nanoscale, 2014, 6, 7332.
75 Chaudhari P. Journal of Vacuum Science & Technology A, 1972, 9, 520.
76 Chason E. Thin Solid Films, 2012, 526, 1.
77 Paunovic M, Schlesinger M. Fundamentals of electrochemical deposition, John Wiley & Sons, US, 2006, pp.115.
78 Xu D, Kwan W L, Chen K, et al. Applied Physics Letters, 2007, 91, 254105.
79 Laplanche G, Kostka A, Horst O M, et al. Acta Materialia, 2016, 118, 152.
80 Pierce D T, Jiménez J A, Bentley J, et al. Acta Materialia, 2015, 100, 178.
81 Wang G, Li G, Zhao L, et al. Materials Science and Engineering: A, 2010, 527, 4270.
82 Bufford D, Wang H, Zhang X. Acta Materialia, 2011, 59, 93.
83 Zhao W, Tao N, Guo J, et al. Scripta Materialia, 2005, 53, 745.
84 Bahmanpour H, Youssef K M, Horky J, et al. Acta Materialia, 2012, 60, 3340.
85 Edalati K, Toh S, Iwaoka H, et al. Scripta Materialia, 2012, 67, 814.
86 Liu X, Sun L, Zhu L, et al. Acta Materialia, 2018, 149, 397.
87 Kalsar R, Suwas S. Scripta Materialia, 2018, 154, 207.
88 Wang J J, Tao N R. Scripta Materialia, 2018, 149, 16.
89 Xu Z, Li N, Jiang H, et al. Materials Science and Engineering: A, 2015, 621, 272.
90 Liu G, Gu J, Ni S, et al. Materials Characterization, 2015, 103, 107.
91 Stepanov N, Tikhonovsky M, Yurchenko N, et al. Intermetallics, 2015, 59, 8.
92 Li Y S, Tao N R, Lu K. Acta Materialia, 2008, 56, 230.
93 Zhang Y, Tao N R, Lu K. Acta Materialia, 2008, 56, 2429.
94 Hong C S, Tao N R, Huang X, et al. Acta Materialia, 2010, 58, 3103.
95 Agrawal A K, Singh A. Materials Science and Engineering: A, 2017, 687, 306.
96 Liu S F, Wu Y, Wang H T, et al. Intermetallics, 2018, 93, 269.
97 SchrammR, Reed R. Metallurgical Transactions A, 1975, 6A, 1345.
98 De Cooman B C, Estrin Y, Kim S K. Acta Materialia, 2018, 142, 283.
99 Ghasri-Khouzani M, McDermid J R. Materials Science and Engineering: A, 2015, 621, 118.
100 Lu J, Hultman L, Holmstrm E, et al. Acta Materialia, 2016, 111, 39.
101 Kim J K, De Cooman B C. Materials Science and Engineering: A, 2016, 676, 216.
102 Pierce D T, Jiménez J A, Bentley J, et al. Acta Materialia, 2014, 68, 238.
103 Liu S, Wu Y, Wang H, et al. Journal of Alloys and Compounds, 2019, 792, 444.
104 Xiong R, Peng H, Si H, et al. Materials Science and Engineering: A, 2014, 598, 376.
105 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 227.
106 Zaddach A J, Niu C, Koch C C, et al. Jom, 2013, 65, 1780.
107 Dumay A, Chateau J P, Allain S, et al. Materials Science and Engineering: A, 2008, 483-484, 184.
108 Kang M, Woo W, Lee Y K, et al. Materials Letters, 2012, 76, 93.
109 Lehnhoff G R, Findley K O, De Cooman B C. Scripta Materialia, 2014, 92, 19.
110 Jin J E, Lee Y K. Acta Materialia, 2012, 60, 1680.
111 Cuddy L, Leslie W. Acta Metallurgica, 1972, 20, 1157.
112 Olson G B, Cohen M. Metallurgical and Materials Transactions A, 1976, 7A, 1897.
113 Shun T, Wan C, Byrne J. Acta Metallurgica et Materialia, 1992, 40, 3407.
114 Huang T T, Dan W J, Zhang W G. Metallurgical and Materials Tran-sactions A, 2017, 48, 4553.
115 Wang Z W, Wang Y B, Liao X Z, et al. Scripta Materialia, 2009, 60, 52.
116 Shang Y Y, Wu Y, He J Y, et al. Intermetallics, 2019, 106, 77.
117 Li Z. Acta Materialia, 2019, 164, 400.
118 Wang Z, Baker I, Cai Z, et al. Acta Materialia, 2016, 120, 228.
119 Chen L B, Wei R, Tang K, et al. Materials Science and Engineering: A, 2018, 716, 150.
120 Beyramali K M, Asle Z M. Scripta Materialia, 2017, 139, 83.
121 Cockayne D J H, Jenkins M L, Ray I L F. Philosophical Magazine, 1971, 24, 1383.
122 Tian L Y, Lizárraga R, Larsson H, et al. Acta Materialia, 2017, 136, 215.
123 Zhang Y H, Zhuang Y, Hu A, et al. Scripta Materialia, 2017, 130, 96.
124 Chandran M, Sondhi S K. Journal of Applied Physics, 2011, 109, 103525.
125 Shao Q Q, Liu L H, Fan T W, et al. Journal of Alloys and Compounds, 2017, 726, 601.
126 Lu S, Hu Q M, Johansson B, et al. Acta Materialia, 2011, 59, 5728.
127 Okamoto N L, Fujimoto S, Kambara Y, et al. Scientific Reports, 2016, 6, 35863.
128 Xu X D, Liu P, Tang Z, et al. Acta Materialia, 2018, 144, 107.
129 Liu J, Chen C, Xu Y, et al. Scripta Materialia, 2017, 137, 9.
130 Walter M, Mujica Roncery L, Weber S, et al. Journal of Materials Science, 2020, 55, 13424.
131 Lee S J, Jung Y S, Baik S I, et al. Scripta Materialia, 2014, 92, 23.
132 Rafaja D, Krbetschek C, Ullrich C, et al. Journal of Applied Crystallography, 2014, 47, 936.
133 Curtze S, Kuokkala V T. Acta Materialia, 2010, 58, 5129.
134 Curtze S, Kuokkala V T, Oikari A, et al. Acta Materialia, 2011, 59, 1068.
135 Peng X, Zhu D, Hu Z, et al. Materials & Design, 2013, 45, 518.
136 Li Q, Zhang T W, Qiao J W, et al. Journal of Alloys and Compounds, 2020, 816, 152663.
137 Li W, Lu S, Hu Q M, et al. Journal of Physics Condensed Matter, 2014, 26, 265005.
138 Aerts E, Delavignette P, Siems R, et al. Journal of Applied Physics, 1962, 33, 3078.
139 Reed R P, Schramm R E. Journal of Applied Physics, 1974, 45, 4705.
140 Williamson G, Hall W. Acta Metallurgica, 1953, 1, 22.
141 Cao F, Beyerlein I J, Addessio F L, et al. Acta Materialia, 2010, 58, 549.
142 Gray G T. Annual Review of Materials Research, 2012, 42, 285.
143 Wang B, He H, Naeem M, et al. Scripta Materialia, 2018, 155, 54.
144 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153.
145 Guo Z, Zhao M, Li C, et al. Materials Science and Engineering: A, 2012, 555, 77.
146 Chen A Y, Ruan H H, Wang J, et al. Acta Materialia, 2011, 59, 3697.
147 Christian J W, Mahajan S. Progress in Materials Science, 1995, 39, 1.
148 Naeem M, He H, Zhang F, et al. Science Advances, 2020, 6, eaax4002.
149 Venables J A. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 2006, 7, 35.
150 Huang S, Li W, Lu S, et al. Scripta Materialia, 2015, 108, 44.
151 Kim H, Ha Y, Kwon K H, et al. Acta Materialia, 2015, 87, 332.
152 Wang B, Zhang Z, Cui J, et al. ACS Applied Materials & Interfaces, 2017, 9, 29451.
153 You Z, Li X, Gui L, et al. Acta Materialia, 2013, 61, 217.
154 Gu P, Dao M, Zhu Y. Philosophical Magazine, 2014, 94, 1249.
155 Li X, Wei Y, Lu L, et al. Nature, 2010, 464, 877.
156 Luo Z F, Liang Y L, Long S L, et al. Materials Science and Engineering: A, 2017, 690, 225.
157 Lu L, Chen X, Huang X, et al. Science, 2009, 323, 607.
158 Kamikawa N, Huang X, Tsuji N, et al. Acta Materialia, 2009, 57, 4198.
159 Dao M, Lu L, Shen Y F, et al. Acta Materialia, 2006, 54, 5421.
160 Davies R. Metallurgical Transactions A, 1978, 9, 671.
161 Moon J, Bouaziz O, Kim H S, et al. Scripta Materialia, 2021, 197, 113808.
162 Mirkhani H, Joshi S P. Journal of the Mechanics and Physics of Solids, 2014, 68, 107.
163 Kocks U F. Journal of Engineering Materials and Technology, 1976, 98, 76.
164 Launey M E, Ritchie R O. Advanced Materials, 2009, 21, 2103.
165 Zeng Z, Li X, Lu L, et al. Acta Materialia, 2015, 98, 313.
166 Kim S W, Li X, Gao H, et al. Acta Materialia, 2012, 60, 2959.
167 Shan Z, Lu L, Minor A, et al. Jom, 2008, 60, 71.
[1] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[2] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[3] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[4] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[5] 尹道道, 王海, 张珍杰, 向飞, 王海龙, 纪宪坤. 室外环境下不同尺寸混凝土中膨胀剂的应用效果研究[J]. 材料导报, 2022, 36(Z1): 21110148-4.
[6] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[7] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[8] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[9] 郭豪, 贾非, 陈琰霏, 塔力哈特·吾拉孜别克, 尹宗琦, 孙东磊. 应变速率对硬质聚氨酯准静态拉伸行为的影响[J]. 材料导报, 2022, 36(5): 20120184-4.
[10] 付鹏程, 肖国庆, 丁冬海, 方宇飞, 种小川, 朱现峰. 高压电瓷废料制备低密度高强度陶粒支撑剂及其性能[J]. 材料导报, 2022, 36(4): 21010085-5.
[11] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[12] 贺炯煌, 龙广成, 常智杨, 杨智涵, 谢友均. 不同养护温度下SAP对水泥浆体水化动力学的影响[J]. 材料导报, 2022, 36(22): 20100061-7.
[13] 王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
[14] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[15] 于晓晨, 李华健, 高博扬, 蒋银林, 李小杰, 郑荣芳, 吴涵, 宋泽钰, 樊继斌, 赵鹏. Er3+/Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉的发光性能和温度特性[J]. 材料导报, 2022, 36(18): 21050128-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed