Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21050109-9    https://doi.org/10.11896/cldb.21050109
  高分子与聚合物基复合材料 |
催化化学中的聚合物基纳米反应器
邱嘉琪1, 闵玉婷1, 陈涛1,2,*
1 浙江理工大学先进纺织材料与制备技术教育部重点实验室,杭州 310018
2 浙江省绿色清洁技术及洗涤用品重点实验室,浙江 丽水 323000
Polymer-based Nanoreactors in Catalytic Chemistry
QIU Jiaqi1, MIN Yuting1, CHEN Tao1,2,*
1 Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, Zhejiang, China
下载:  全 文 ( PDF ) ( 21192KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物基纳米反应器具有制备简单、分散性好、结构易调控等优点。将均相催化剂引入到聚合物基纳米反应器中既可实现均相催化和异相催化的有机结合,也可有效地利用纳米反应器底物浓缩效应、限域效应等特殊效应。此外,由于聚合物基催化纳米反应器的结构易调控、可实现串联催化、可回收再利用等特点,且其模拟了酶作用的微环境,具有催化活性高、可水相催化等优点。基于此,国内外的研究者们设计了大量不同结构的催化纳米反应器,包括两亲性聚合物自组装的纳米反应器、交联聚合物自组装的纳米反应器、单链粒子型纳米反应器以及其它类型聚合物基纳米反应器。本文对不同类型的聚合物基纳米反应器的构筑以及催化应用进行了综述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱嘉琪
闵玉婷
陈涛
关键词:  聚合物  纳米反应器  催化化学    
Abstract: The polymer-based nanoreactor has the characteristics of easy preparation, good dispersion and facile modulation of molecular structure. The introduction of homogeneous catalyst into polymer-based nanoreactor can not only realize the organic combination of homogeneous catalysis and heterogeneous catalysis, but also effectively utilize the nanoreactor's substrate concentration effect, confinement effect, etc. Polymer-based nanoreactors have been widely used in many fields, such as separation, sensing, electronics, drug delivery, catalysis, etc. In the field of catalysis, the polymeric nanoreactor simulates the microenvironment of enzyme possessing excellent catalytic activity in water. Besides, polymer-based nanoreactor is recyclable and can be used for cascade catalysis. Therefore, researchers around the world have designed a large number of catalytic nanoreactors with different structures, including nanoreactors based on amphiphilic polymers, crosslinked polymers, single-chain particles and other types of polymers. These catalytic nanoreactors displayed excellent catalytic performance. This paper reviews the fabrication and catalytic application of such polymer-based nanoreactors.
Key words:  polymer    nanoreactor    catalytic chemistry
发布日期:  2023-01-03
ZTFLH:  O63  
基金资助: 国家自然科学基金(52273216)
通讯作者:  tao.chen@zstu.edu.cn   
作者简介:  邱嘉琪,2021年6月毕业于浙江理工大学,获得工学硕士学位。此前,在陈涛老师的指导下从事聚合物基纳米反应器的构筑及催化应用研究。
陈涛,浙江理工大学纺织科学与工程学院轻化工程系研究员。2007年于华东理工大学获得应用化学博士学位。主要从事聚合物基催化纳米反应器以及智能纺织材料的研究,已发表相关学术论文40余篇。
引用本文:    
邱嘉琪, 闵玉婷, 陈涛. 催化化学中的聚合物基纳米反应器[J]. 材料导报, 2022, 36(24): 21050109-9.
QIU Jiaqi, MIN Yuting, CHEN Tao. Polymer-based Nanoreactors in Catalytic Chemistry. Materials Reports, 2022, 36(24): 21050109-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050109  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21050109
1 Han D F, Yang Q H, Li C. Chinese Journal of Catalysis, 2008, 29(9), 789(in Chinese).
韩涤非, 杨启华, 李灿. 催化学报, 2008, 29(9), 789.
2 Georgakilas V, Perman J A, Tucek J, et al. Chemical Reviews, 2015, 115(11), 4744.
3 Moughton A O, Hillmyer M A, Lodge T P, Macromolecules, 2011, 45(1), 2.
4 Altava B, Burguete M I, Garcia-Verdugo E, et al. Chemical Society Reviews, 2018, 47(8), 2722.
5 Gaitzsch J, Huang X, Voit B. Chemical Reviews, 2016, 116(3), 1053.
6 Zhang J, Zhang M, Tang K, et al. Small, 2014, 10(1), 32.
7 Kitanosono T, Masuda K, Xu P, et al. Chemical Reviews, 2018, 118(2), 679.
8 Zhou J, Wu R, Chen Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126271.
9 Larrañaga A, Lomora M, Sarasua J R, et al. Progress in Materials Science, 2017, 90, 325.
10 Pick H, Alves A C, Vogel H. Chemical Reviews, 2018, 118(18), 8598.
11 Wang P, Zhang J L, Qing G Y. Materials Reports A:Review Papers, 2015, 29(5), 1(in Chinese).
王鹏, 张静丽, 卿光焱. 材料导报:综述篇, 2015, 29(5), 1.
12 Liu Y, Wang J, Zhang M, et al. ACS Nano, 2020, 14(10), 12491.
13 Varlas S, Lawrenson S B, Arkinstall L A, et al. Progress in Polymer Science, 2020, 107.
14 Zhong K L, Yin B Z, Jing L Y. Chinese Polymer Bulletin, 2009(2), 48 (in Chinese).
钟克利, 尹炳柱, 金龙一. 高分子通报, 2009(2), 48.
15 Patterson J P, Cotanda P, Kelley E G, et al. Polymer Chemistry, 2013, 4(6), 2033.
16 Moore B L, Lu A, Longbottom D A, et al. Polymer Chemistry, 2013, 4(7), 2304.
17 Zhang Y, Tan R, Zhao G, et al. Catalysis Science & Technology, 2016, 6(2), 488.
18 You S S, Yang W T, Yin M Z. Progress in Chemistry, 2012, 24(11), 2198 (in Chinese).
尤树森, 杨万泰, 尹梅贞. 化学进展, 2012, 24(11), 2198.
19 Zhang Y, Tan R, Zhao G, et al. Journal of Catalysis, 2016, 335, 62.
20 Gao M, Tan R, Hao P, et al. RSC Advances, 2017, 7(86), 54570.
21 Tang Z, Wang W, Pi Y, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(21), 17967.
22 Ge Z, Xie D, Chen D, et al. Macromolecules, 2007, 40(10), 3538.
23 Cotanda P, Lu A, Patterson J P, et al. Macromolecules, 2012, 45(5), 2377.
24 Lu A, Cotanda P, Patterson J P, et al. Chemical Communications, 2012, 48(78), 9699.
25 Zayas H A, Lu A, Valade D, et al. ACS Macro Letters, 2013, 2(4), 327.
26 Lestini E, Blackman L D, Zammit C M, et al. Polymer Chemistry, 2018, 9(7), 820.
27 Chen T, Xu Z, Zhou L, et al. Molecular Catalysis, 2019, 474, 110422.
28 Qiu J, Meng F, Wang M, et al. Polymer, 2021, 222, 123660.
29 Zhou L, Qiu J, Wang M, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4569.
30 Le D, Dilger M, Pertici V, et al. Angewandte Chemie-International Edition, 2019, 58(14), 4725.
31 Wang M, Xu Z, Shi Y, et al. Journal of Organic Chemistry, 2021, 86(12), 8027.
32 Crooks R M, Zhao M, Sun L, et al. Accounts of Chemical Research, 2001, 34(3), 181.
33 Helms B, Liang C O, Hawker C J, et al. Macromolecules, 2005, 38(13), 5411.
34 Wang Z J, Deng G J, Li Y, et al. Organic Letters, 2007, 9(7), 1243.
35 He Y M, Feng Y, Fan Q H. Accounts of Chemical Research, 2014, 47(10), 2894.
36 Helms B, Fréchet J M J. Advanced Synthesis & Catalysis, 2006, 348(10-11), 1125.
37 Javor S, Delort E, Darbre T, et al. Journal of the American Chemical Society, 2007, 129(43), 13238.
38 Madhavan N, Jones C W, Weck M. Accounts of Chemical Research, 2008, 41(9), 1153.
39 Peng M, Chen Y, Tan R, et al. RSC Advances, 2013, 3(43), 20684.
40 Chen Y, Tan R, Zheng W, et al. Catalysis Science & Technology, 2014, 4(11), 4084.
41 Saberi D, Hashemi H, Ghanaatzadeh N, et al. Applied Organometallic Chemistry, 2020, 34(4)
42 Zheng K, Ren J, He J. Macromolecules, 2019, 52(17), 6780.
43 Helms B, Guillaudeu S J, Xie Y, et al. Angewandte Chemie-International Edition, 2005, 44(39), 6384.
44 Dichtel W R, Baek K Y, Fréchet J M J, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(17), 4939.
45 Chi Y, Scroggins S T, Frechet J M. Journal of the American Chemical Society, 2008, 130(20), 6322.
46 Rodionov V, Gao H, Scroggins S, et al. Journal of the American Chemical Society, 2010, 132(8), 2570.
47 Zoppe J O, Ataman N C, Mocny P, et al. Chemical Reviews, 2017, 117(3), 1105.
48 Kuepfert M, Ahmed E, Weck M. Macromolecules, 2021, 54, 8, 3845.
49 Womble C T, Kuepfert M, Weck M. Macromolecular Rapid Communications, 2019, 40(1), e1800580.
50 Hoyt C B, Lee L C, Cohen A E, et al. ChemCatChem, 2017, 9(1), 137.
51 Lu J, Liang L, Weck M. Journal of Molecular Catalysis A: Chemical, 2016, 417, 122.
52 Liu Y, Wang Y, Wang Y, et al. Journal of the American Chemical Society, 2011, 133(36), 14260.
53 Lee L C, Lu J, Weck M, et al. ACS Catalysis, 2016, 6(2), 784.
54 Lu J, Dimroth J, Weck M. Journal of the American Chemical Society, 2015, 137(40), 12984.
55 Kuepfert M, Cohen A E, Cullen O, et al. Chemistry, 2018, 24(70), 18648.
56 Qu P, Kuepfert M, Jockusch S, et al. ACS Catalysis, 2019, 9(4), 2701.
57 Qu P, Kuepfert M, Hashmi M, et al. Journal of the American Chemical Society, 2021, 143(12), 4705.
58 Poli R, Chen S, Zhang X W, et al. ACS Symposium Series, 2015, 1188, 203.
59 Cardozo A F, Julcour C, Barthe L, et al. Journal of Catalysis, 2015, 324, 1.
60 Lobry E, Cardozo A F, Barthe L, et al. Journal of Catalysis, 2016, 342, 164.
61 Zhang X, Cardozo A F, Chen S, et al. Chemistry, 2014, 20(47), 15505.
62 Chen S, Cardozo A F, Julcour C, et al. Polymer, 2015, 72, 327.
63 Joumaa A, Gayet F, Garcia-Suarez E J, et al. Polymers, 2020, 12(5), 1107.
64 Wang H, Vendrame L, Fliedel C, et al. Chemistry, 2021, 27(16), 5205.
65 Lu A, Moatsou D, Longbottom D A, et al. Chemical Science, 2013, 4(3), 965.
66 Lu A, Moatsou D, Hands-Portman I, et al. ACS Macro Letters, 2014, 3(12), 1235.
67 Moore B L, Moatsou D, Lu A, et al. Polymer Chemistry, 2014, 5(10), 3487.
68 Hanlon A M, Lyon C K, Berda E B. Macromolecules, 2015, 49(1), 2.
69 Fisher T, Spann S, An Q, et al. Chemical Science, 2018, 9, 4696.
70 Thanneeru S, Nganga J K, Amin A S, et al. ChemCatChem, 2017, 9(7), 1157.
71 Garmendia S, Dove A P, Taton D, et al. Polymer Chemistry, 2018, 9(43), 5286.
72 Garmendia S, Dove A P, Taton D, et al. Polymer Chemistry, 2019, 10(18), 2282.
73 Chen T, Zhang S, Hua L, et al. Macromolecular Research, 2019, 27(10), 931.
74 Zhang Y, Tan R, Gao M, et al. Green Chemistry, 2017, 19(4), 1182.
75 Zhang Y, Wang W, Fu W, et al. Chemical Communications, 2018, 54(68), 9430.
76 Wang W, Li C, Pi Y, et al. Catalysis Science & Technology, 2019, 9(20), 5626.
77 Wang W, Wang J, Li S, et al. Green Chemistry, 2020, 22(14), 4645.
78 Huerta E, Stals P J, Meijer E W, et al. Angewandte Chemie-International Edition, 2013, 52(10), 2906.
79 Rothfuss H, Knofel N D, Roesky P W, et al. Journal of the American Chemical Society, 2018, 140(18), 5875.
80 Mavila S, Rozenberg I, Lemcoff N G. Chemical Science, 2014, 5(11), 4196.
81 Artar M, Terashima T, Sawamoto M, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52(1), 12.
82 Hosono N, Palmans A R, Meijer E W. Chemical Communications, 2014, 50(59), 7990.
83 Terashima T, Mes T, De Greef T F, et al. Journal of the American Chemical Society, 2011, 133(13), 4742.
84 Perez-Baena I, Barroso-Bujans F, Gasser U, et al. ACS Macro Letters, 2013, 2(9), 775.
85 Sanchez-Sanchez A, Arbe A, Colmenero J, et al. ACS Macro Letters, 2014, 3(5), 439.
86 Rubio-Cervilla J, Gonzalez E, Pomposo J A, Nanomaterials, 2017, 7(10), 341.
87 Knofel N D, Rothfuss H, Willenbacher J, et al. Angewandte Chemie-International Edition, 2017, 56(18), 4950.
88 Bai Y, Feng X, Xing H, et al. Journal of the American Chemical Society, 2016, 138(35), 11077.
89 Azuma Y, Terashima T, Sawamoto M. ACS Macro Letters, 2017, 6(8), 830.
90 Lambert R, Wirotius A L, Taton D. ACS Macro Letters, 2017, 6(5), 489.
91 Scholten J D, Leal B C, Dupont J. ACS Catalysis, 2012, 2(1), 184.
92 Montolio S, Vicent C, Aseyev V, et al. ACS Catalysis, 2016, 6(10), 7230.
93 Das S, Heasman P, Ben T, et al. Chemical Reviews, 2017, 117(3), 1515.
94 Ko J H, Kang N, Park N, et al. ACS Macro Letters, 2015, 4(7), 669.
95 Yoo J, Park N, Park J H, et al. ACS Catalysis, 2014, 5(1), 350.
96 Sinner F, Buchmeiser M R. Macromolecules, 2000, 33(16), 5777.
97 Xu Y, Wang T, He Z, et al. Polymer Chemistry, 2018, 9(29), 4017.
98 Shi B, Yu H, Gao S, et al. Microporous and Mesoporous Materials, 2020, 294, 109890.
99 Xu Y, Wang T, Shi B, et al. Polymer Chemistry, 2019, 10(12), 1489.
100 Liu Y, Zhang L, Gao S, et al. New Journal of Chemistry, 2020, 44(16), 6661.
101 Xu Y, Wang T, He Z, et al. Macromolecules, 2017, 50(24), 9626.
102 He Z, Zhou M, Wang T, et al. ACS Applied Materials & Interfaces, 2017, 9(40), 35209.
103 Zhou M, Wang T, He Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(3), 2924.
104 Xiong L, Zhang H, He Z, et al. New Journal of Chemistry, 2018, 42(2), 1368.
105 Meng G, Gao S, Liu Y, et al. New Journal of Chemistry, 2019, 43(5), 2269.
106 Yu W, Zhou M, Wang T, et al. Organic Letters, 2017, 19(21), 5776.
107 Longstreet A R, McQuade D T. Accounts of Chemical Research, 2013, 46(2), 327.
108 Poe S L, Kobaslija M, McQuade D T. Journal of the American Chemical Society, 2006, 128(49), 15586.
109 Poe S L, Kobaslija M, McQuade D T. Journal of the American Chemical Society, 2007, 129(29), 9216.
110 Mao Z, Song M, Zhong Y, et al. Chemical Engineering Journal, 2014, 240, 116.
111 Price K E, Mason B P, Bogdan A R, et al. Journal of the American Chemical Society, 2006, 128(32), 10376.
112 Mason B P, Bogdan A R, Goswami A, et al. Organic Letters, 2007, 9(17), 3449.
113 Shiraishi Y, Kimata Y, Koizumi H, et al. Langmuir, 2008, 24(17), 9832.
114 Kong Y, Tan R, Zhao L, et al. Green Chemistry, 2013, 15(9), 2422.
115 Zhang M, Tang Z, Fu W, et al. Chemical Communications, 2019, 55(5), 592.
116 Jiang X, Wang B, Li C Y, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(11), 2853.
117 Jia Z, Wang K, Tan B, et al. ACS Catalysis, 2017, 7(5), 3693.
118 Mohan A, Rout L, Thomas A M, et al. RSC Advances, 2020, 10(47), 28193.
[1] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[2] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[3] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[4] 黄雨辰, 张永明. 乳液复配对瓷砖粘结体系中聚合物水泥防水涂膜的影响[J]. 材料导报, 2022, 36(Z1): 22010015-6.
[5] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[6] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[7] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[8] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[9] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[10] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[11] 刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
[12] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[13] 刘均澔, 李文兵, 龚韬, 魏婉婷, 钱坤. 形状记忆微/纳米图案的设计、应用和发展[J]. 材料导报, 2022, 36(23): 20100218-10.
[14] 张定军, 张晟祥, 包亮军, 魏芳, 李文杰. 一种感温聚合物复合凝胶暂堵剂的制备及性能研究[J]. 材料导报, 2022, 36(23): 21050244-6.
[15] 赵磊, 彭元佑, 李媛, 张倩倩, 冉奋. 聚乙二醇分子刷接枝改性碳微球及其电化学性能[J]. 材料导报, 2022, 36(21): 21080112-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed