Effects of Tm3+ on Microstructure and Energy Storage Performance of AgNbO3 Antiferroelectric Ceramics
ZHOU Chuang1, CAI Wei1,2,*, CHEN Dakai1, YANG Ruiru1, ZHANG Heng1, CHEN Gang1,2
1 School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China 2 Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, China
Abstract: In recent years, AgNbO3 lead-free antiferroelectric materials as the utmost potential dielectric storage materials have aroused a great concern. However, its lower energy storage density and energy storage efficiency limit its application. In this work, the effects of Tm3+ on the microstructure, dielectric, ferroelectric, and energy storage performance of AgNbO3 ceramics have been investigated. These results show that the substitution of Tm3+ for Ag+ at A sites of AgNbO3 ceramics can obviously refine the grain, and enhance the stability of the antiferroelectric phase so that its energy storage performance can significantly be improved. The enhanced stability of antiferroelectric phase is due to that the reduced tolerance factor and the formation of silver vacancy caused by the introduction of Tm3+can destroy the long-range interaction of cation displacement and oxygen octahedron tilt. AgNbO3-0.1at% Tm2O3 ceramics exhibit excellent energy storage performance (the energy storage density and the energy storage efficiency measured at 200 kV/cm are 3.32 J/cm3 and 62.5%, respectively), which shows potential application prospects in high power pulse electronic devices.
1 Diao C L, Dong L, Yang Y, et al. Materials Reports A:Review Papers, 2019, 33(12), 3921(in Chinese). 刁春丽, 董乐, 杨毅, 等. 材料导报:综述篇, 2019, 33(12), 3921. 2 Wei F B, Zhang L Y, Li Y, et al. Materials Reports B:Research Papers, 2019, 33(8), 2648(in Chinese). 卫芳彬, 张雷阳, 王颖, 等. 材料导报:研究篇, 2019, 33(8), 2648. 3 Mao S F, Luo N N, Han K, et al. Journal of Materials Science Materials in Electronics, 2020, 31(10), 7731. 4 Gao J, Zhang Y C, Zhao L, et al. Journal of Materials Chemistry A, 2019, 7(5), 2225. 5 Gao J, Liu Q, Dong J, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 6097. 6 Xie Y C, Wang J, Yu Y Y, et al. Applied Surface Science, 2018, 440, 1150. 7 Zhou M X, Liang R H, Zhou Z Y, et al. Materials Research Bulletin, 2018, 98, 166. 8 Zhao L, Liu Q, Gao J, et al. Advanced Materials, 2017, 29(31), 1701824. 9 Zhao L, Gao J, Liu Q, et al. ACS Applied Materials and Interfaces, 2018, 10(1), 819. 10 Xu Y H, Guo Y, Liu Q, et al. Journal of Alloys and Compounds, 2020, 821, 153260. 11 Wang X, Ren P R, Ren D, et al. Ceramics International, 2021, 47(3), 3699. 12 Chen L M, Li Y, Zhang Q W, et al. Ceramics International, 2016, 42(11), 12537. 13 Gao J, Li Q, Zhang S J, et al. Journal of Applied Physics, 2020, 128(7), 070903. 14 Yang D, Gao J, Shu L, et al. Journal of Materials Chemistry A, 2020, 8(45), 23724. 15 Ma J L, Yan S G, Xu C H, et al. Materials Letters, 2019, 247, 40. 16 Zhang H B, Wei T, Zhang Q, et al. Journal of Materials Chemistry C, 2020, 8(47), 16648. 17 Li S, Nie H C, Wang G S, et al. Journal of Materials Chemistry C, 2019, 7(6), 1551. 18 Ren P R, Ren D, Sun L, et al. Journal of the European Ceramic Society, 2020, 40(13), 4495. 19 Zhao L, Liu Q, Zhang S J, et al. Journal of Materials Chemistry C, 2016, 4(36), 8380. 20 Luo N N, Han K, Zhuo F Q, et al. Journal of Materials Chemistry A, 2019, 7(23), 14118. 21 Song A Z, Song J M, Lv Y K, et al. Materials Letters, 2019, 237, 278. 22 Xu Y H, Guo Y, Liu Q, et al. Journal of the European Ceramic Society, 2020, 40(1), 56. 23 Tian Y, Jin L, Zhang H F, et al. Journal of Materials Chemistry A, 2017, 5(33), 17525. 24 Han K, Luo N N, Jing Y, et al. Ceramics International, 2019, 45(5), 5559. 25 Shannon R D. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32(5), 751. 26 Yan Z N, Zhang D, Zhou X F, et al. Journal of Materials Chemistry A, 2019, 7(17), 10702. 27 Li Q T, Zhang Q W, Cai W, et al. Materials Chemistry and Physics, 2020, 252, 123242. 28 Luo N N, Tang X Y, Han K, et al. Journal of Materials Research, 2021, 36, 1067. 29 Luo N N, Han K, Cabral M J, et al. Nature Communications, 2020, 11(1), 1. 30 Lu Z L, Bao W C, Wang G, et al. Nano Energy, 2021, 79, 105423. 31 Luo N N, Han K, Zhuo F Q, et al. Journal of Materials Chemistry C, 2019, 7(17), 4999. 32 Zhang L, Jiang S L, Zeng Y K, et al. Ceramics International, 2014, 40(4), 5455. 33 Xu C H, Fu Z Q, Liu Z, et al. ACS Sustainable Chemistry and Engineering, 2018, 6(12), 16151. 34 Moriwake H, Fisher C A J, Kuwabara A, et al. Japanese Journal of Applied Physics, 2013, 52(9S1), 09KF08. 35 Han K, Luo N N, Mao S F, et al. Journal of Materiomics, 2019, 5(4), 597. 36 Tian Y, Jin L, Hu Q Y, et al. Journal of Materials Chemistry A, 2019, 7(2), 834.