Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090143-6    https://doi.org/10.11896/cldb.21090143
  无机非金属及其复合材料 |
Tm3+对AgNbO3反铁电陶瓷微结构和储能性能的影响
周创1, 蔡苇1,2,*, 陈大凯1, 杨蕊如1, 章恒1, 陈刚1,2
1 重庆科技学院冶金与材料工程学院,重庆 401331
2 纳微复合材料与器件重庆市重点实验室,重庆 401331
Effects of Tm3+ on Microstructure and Energy Storage Performance of AgNbO3 Antiferroelectric Ceramics
ZHOU Chuang1, CAI Wei1,2,*, CHEN Dakai1, YANG Ruiru1, ZHANG Heng1, CHEN Gang1,2
1 School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2 Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 113996KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 AgNbO3无铅反铁电材料作为一种极具潜力的电介质储能材料,近年来受到了广泛的关注。然而,储能密度和储能效率较低,限制了它的应用。本工作研究了Tm3+对AgNbO3陶瓷的微结构、介电性、铁电性和储能性能的影响。结果表明,Tm3+取代AgNbO3陶瓷A位的Ag+,具有明显的细化晶粒的作用,增强了反铁电相的稳定性,使其储能性能显著提升。反铁电相稳定性的增强是由于Tm3+的引入降低了结构的容差因子和产生了Ag空位,破坏了阳离子位移和氧八面体倾斜等长程相互作用的结果。AgNbO3-0.1%(原子分数)Tm2O3陶瓷在200 kV/cm下表现出优异的储能性能(可回收储能密度为3.32 J/cm3,储能效率为62.5%),在高功率脉冲电子器件中具有潜在的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周创
蔡苇
陈大凯
杨蕊如
章恒
陈刚
关键词:  AgNbO3  反铁电  储能性能  弛豫行为    
Abstract: In recent years, AgNbO3 lead-free antiferroelectric materials as the utmost potential dielectric storage materials have aroused a great concern. However, its lower energy storage density and energy storage efficiency limit its application. In this work, the effects of Tm3+ on the microstructure, dielectric, ferroelectric, and energy storage performance of AgNbO3 ceramics have been investigated. These results show that the substitution of Tm3+ for Ag+ at A sites of AgNbO3 ceramics can obviously refine the grain, and enhance the stability of the antiferroelectric phase so that its energy storage performance can significantly be improved. The enhanced stability of antiferroelectric phase is due to that the reduced tolerance factor and the formation of silver vacancy caused by the introduction of Tm3+can destroy the long-range interaction of cation displacement and oxygen octahedron tilt. AgNbO3-0.1at% Tm2O3 ceramics exhibit excellent energy storage performance (the energy storage density and the energy storage efficiency measured at 200 kV/cm are 3.32 J/cm3 and 62.5%, respectively), which shows potential application prospects in high power pulse electronic devices.
Key words:  AgNbO3    antiferroelectric    energy storage performance    relaxor
出版日期:  2023-03-25      发布日期:  2023-03-27
ZTFLH:  TM22+5  
基金资助: 重庆市高校创新研究群体项目(CXQT19031);重庆市科技创新领军人才支持计划(CSTCCXLJRC201919);国家级大学生创新创业训练计划项目(202011551001);重庆科技学院研究生科技创新训练计划项目(YKJCX2020219);重庆市科慧杯研究生创新创业大赛项目(10111043)
通讯作者:  *蔡苇,博士,重庆科技学院冶金与材料工程学院教授、硕士研究生导师。2011年于重庆大学获博士学位,2014年作为美国罗格斯大学访问学者交流学习。主要从事电磁功能材料及铁电新能源材料研究,以第一作者/通信作者发表学术论文101篇(SCI收录64篇),获授权发明专利25项。caiwei_cqu@163.com   
作者简介:  周创,重庆科技学院冶金与材料工程学院硕士研究生。研究方向为电介质储能材料微结构和电性能调控。
引用本文:    
周创, 蔡苇, 陈大凯, 杨蕊如, 章恒, 陈刚. Tm3+对AgNbO3反铁电陶瓷微结构和储能性能的影响[J]. 材料导报, 2023, 37(6): 21090143-6.
ZHOU Chuang, CAI Wei, CHEN Dakai, YANG Ruiru, ZHANG Heng, CHEN Gang. Effects of Tm3+ on Microstructure and Energy Storage Performance of AgNbO3 Antiferroelectric Ceramics. Materials Reports, 2023, 37(6): 21090143-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090143  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090143
1 Diao C L, Dong L, Yang Y, et al. Materials Reports A:Review Papers, 2019, 33(12), 3921(in Chinese).
刁春丽, 董乐, 杨毅, 等. 材料导报:综述篇, 2019, 33(12), 3921.
2 Wei F B, Zhang L Y, Li Y, et al. Materials Reports B:Research Papers, 2019, 33(8), 2648(in Chinese).
卫芳彬, 张雷阳, 王颖, 等. 材料导报:研究篇, 2019, 33(8), 2648.
3 Mao S F, Luo N N, Han K, et al. Journal of Materials Science Materials in Electronics, 2020, 31(10), 7731.
4 Gao J, Zhang Y C, Zhao L, et al. Journal of Materials Chemistry A, 2019, 7(5), 2225.
5 Gao J, Liu Q, Dong J, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 6097.
6 Xie Y C, Wang J, Yu Y Y, et al. Applied Surface Science, 2018, 440, 1150.
7 Zhou M X, Liang R H, Zhou Z Y, et al. Materials Research Bulletin, 2018, 98, 166.
8 Zhao L, Liu Q, Gao J, et al. Advanced Materials, 2017, 29(31), 1701824.
9 Zhao L, Gao J, Liu Q, et al. ACS Applied Materials and Interfaces, 2018, 10(1), 819.
10 Xu Y H, Guo Y, Liu Q, et al. Journal of Alloys and Compounds, 2020, 821, 153260.
11 Wang X, Ren P R, Ren D, et al. Ceramics International, 2021, 47(3), 3699.
12 Chen L M, Li Y, Zhang Q W, et al. Ceramics International, 2016, 42(11), 12537.
13 Gao J, Li Q, Zhang S J, et al. Journal of Applied Physics, 2020, 128(7), 070903.
14 Yang D, Gao J, Shu L, et al. Journal of Materials Chemistry A, 2020, 8(45), 23724.
15 Ma J L, Yan S G, Xu C H, et al. Materials Letters, 2019, 247, 40.
16 Zhang H B, Wei T, Zhang Q, et al. Journal of Materials Chemistry C, 2020, 8(47), 16648.
17 Li S, Nie H C, Wang G S, et al. Journal of Materials Chemistry C, 2019, 7(6), 1551.
18 Ren P R, Ren D, Sun L, et al. Journal of the European Ceramic Society, 2020, 40(13), 4495.
19 Zhao L, Liu Q, Zhang S J, et al. Journal of Materials Chemistry C, 2016, 4(36), 8380.
20 Luo N N, Han K, Zhuo F Q, et al. Journal of Materials Chemistry A, 2019, 7(23), 14118.
21 Song A Z, Song J M, Lv Y K, et al. Materials Letters, 2019, 237, 278.
22 Xu Y H, Guo Y, Liu Q, et al. Journal of the European Ceramic Society, 2020, 40(1), 56.
23 Tian Y, Jin L, Zhang H F, et al. Journal of Materials Chemistry A, 2017, 5(33), 17525.
24 Han K, Luo N N, Jing Y, et al. Ceramics International, 2019, 45(5), 5559.
25 Shannon R D. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32(5), 751.
26 Yan Z N, Zhang D, Zhou X F, et al. Journal of Materials Chemistry A, 2019, 7(17), 10702.
27 Li Q T, Zhang Q W, Cai W, et al. Materials Chemistry and Physics, 2020, 252, 123242.
28 Luo N N, Tang X Y, Han K, et al. Journal of Materials Research, 2021, 36, 1067.
29 Luo N N, Han K, Cabral M J, et al. Nature Communications, 2020, 11(1), 1.
30 Lu Z L, Bao W C, Wang G, et al. Nano Energy, 2021, 79, 105423.
31 Luo N N, Han K, Zhuo F Q, et al. Journal of Materials Chemistry C, 2019, 7(17), 4999.
32 Zhang L, Jiang S L, Zeng Y K, et al. Ceramics International, 2014, 40(4), 5455.
33 Xu C H, Fu Z Q, Liu Z, et al. ACS Sustainable Chemistry and Engineering, 2018, 6(12), 16151.
34 Moriwake H, Fisher C A J, Kuwabara A, et al. Japanese Journal of Applied Physics, 2013, 52(9S1), 09KF08.
35 Han K, Luo N N, Mao S F, et al. Journal of Materiomics, 2019, 5(4), 597.
36 Tian Y, Jin L, Hu Q Y, et al. Journal of Materials Chemistry A, 2019, 7(2), 834.
[1] 邱宇, 朱俊, 周云霞, 李康, 张钰. Al掺杂浓度对Hf0.5Zr0.5O2薄膜铁电性能的影响[J]. 材料导报, 2021, 35(2): 2001-2005.
[2] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[3] 张浩, 郑德一, 胡顺敏, 彭贵贵, 程程, 张静. SrCO3掺杂对PMN-PMnN-PZT-Ce压电陶瓷储能及介电弛豫性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 11-15.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed