Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1306-1310    https://doi.org/10.11896/j.issn.1005-023X.2018.08.019
  材料研究 |
轧制态7A60铝合金的热压缩显微组织及流变行为
薛克敏1, 薄冬青2, 李萍1
1 合肥工业大学材料科学与工程学院,合肥 230009;
2 合肥工业大学智能制造技术研究院,合肥 230009
Hot Compression Microstructure and Rheological Behavior of Rolled 7A60 Aluminum Alloy
XUE Kemin1, BO Dongqing2, LI Ping1
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009;
2 Intelligent Manufacturing Institute of HFUT, Hefei 230009
下载:  全 文 ( PDF ) ( 1846KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对轧制态7A60铝合金在应变速率为0.1~0.01 s-1、变形温度为250~350 ℃条件下热压缩的显微组织特征和流变应力进行实验研究。结果表明:随着应变速率的降低和温度的升高,材料的各向异性减弱,均匀性增强,晶粒发生明显粗化;在热变形的过程中该合金的主要软化机制为动态回复和动态再结晶,峰值应力随应变速率的增加而增大,随温度的升高而降低,在应变速率为0.01 s-1时发生了明显的非连续动态再结晶行为。合金热变形的流变应力行为可用双曲正弦函数来表示,其热激活能为438.981 kJ/mol。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛克敏
薄冬青
李萍
关键词:  7A60铝合金  热压缩  显微组织  流变应力  本构方程    
Abstract: The microstructral characteristics and flow behaviors of rolled 7A60 aluminum alloy experienced hot compression were investigated within a stress rate range of 0.1—0.01 s-1 and a temperature range of 250—350 ℃.The results confirmed the wea-kened anisotropy, the enhanced uniformity, and the obviously coarsened grain for the material with the decrease in strain rate and the increase in temperature. In the process of thermal deformation, the main softening mechanism is dynamic recovery and dynamic recrystallization. The peak stress increases with the increase of strain rate and decreases with the increase of temperature. And at the strain rate of 0.01 s-1, a significant discontinuous dynamic recrystallization behavior occurred. The rheological behavior of the alloy can be characterized by a hyperbolic sine function with a thermal activation energy of 438.981 kJ/mol.
Key words:  7A60 aluminum alloy    hot compression    microstructure    flow stress    constitutive equation
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG376  
基金资助: 国家自然科学基金(51575153)
作者简介:  薛克敏:男,1963年生,博士,教授,博士研究生导师,研究方向为精密塑性成形工艺与仿真 E-mail:xuekm0721@sina.com
引用本文:    
薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
XUE Kemin, BO Dongqing, LI Ping. Hot Compression Microstructure and Rheological Behavior of Rolled 7A60 Aluminum Alloy. Materials Reports, 2018, 32(8): 1306-1310.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.019  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1306
1 Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloy and its material preparation and processing technology[J].Acta Metallurgica Sinica,2015,51(3):257(in Chinese).
张新明,邓运来,张勇.高强铝合金的发展及其材料的制备加工技术[J].金属学报,2015,51(3):257.
2 Yang H T, Lu Z, Gu J L. Study on flow stress of 7A60 aluminum alloy[J].Journal of Aeronautical Materials,2005,25(2):12(in Chinese).
杨洪涛,陆政,顾家琳.7A60铝合金流变应力的研究[J].航空材料学报,2005,25(2):12.
3 Wang Xuehui, Wang Jihui, Fu Congwei. Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques[J].Transactions of Nonferrous Metals Society of China,2014,24(12):390.
4 Wang J L, Li P, Xue K M, et al. Failure analysis and improvement of cup-shaped isothermal and torsion composite mold[J].Journal of Harbin Institute of Technology,2015,47(11):113(in Chinese).
王久林,李萍,薛克敏,等.杯形件等温压扭复合成形模具失效分析及改进[J].哈尔滨工业大学学报,2015,47(11):113.
5 Li P, Zhang X, Xue K M, et al. New process deformation of pure aluminum isometric corner twist[J].Chinese Journal of Plastic Engineering,2010,17(5):47(in Chinese).
李萍,张翔,薛克敏,等.纯铝等径角挤扭新工艺变形[J].塑性工程学报,2010,17(5):47.
6 Qiu L L, Gao W L, Lu Z, et al. Hot-compression rheological beha-vior and microstructure of 7A85 aluminum alloy[J].Materials Engineering,2016,44(1):33(in Chinese).
仇琍丽,高文理,陆政,等.7A85铝合金的热压缩流变行为与显微组织[J].材料工程,2016,44(1):33.
7 Chen X H, Chen K H, Liang X. Flow stress behavior and microstructure of 7085 aluminum alloy thermal deformation[J].Journal of Aeronautical Materials,2011,16(2):225(in Chinese).
陈学海,陈康华,梁信.7085铝合金热变形的流变应力行为和显微组织[J].航空材料学报,2011,16(2):225.
8 Jia F B, Yi Y P, Huang S Q, et al. Study on rheological behavior and constitutive equation of 7A85 aluminum alloy hot compression[J].Hot Working Technology,2010,39(16):19(in Chinese).
贾逢博,易幼平,黄施全,等.7A85铝合金热压缩流变行为与本构方程研究[J].热加工工艺,2010,39(16):19.
9 Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy[J].Journal of Alloys and Compounds,2012,537(5):338.
10 Wei W, Jiang P, Cao F. High temperature constitutive relation of 6082 aluminum alloy[J].Journal of Plastic Engineering,2013,20(2):100(in Chinese).
韦韡,蒋鹏,曹飞.6082铝合金的高温本构关系[J].塑性工程学报,2013,20(2):100.
11 Zhang H, Jin N P, Chen J H. Hot deformation behavior of Al-Zn-Mg-Zr aluminum alloys during compression at elevated temperature[J].Transactions of Nonferrous Metals Society of China,2011,21(3):437.
12 Liu W S, Guo L W, Ma Y Z, et al. Microstructure and rheological behavior of 2A14 aluminum alloy thermal deformation[J].Chinese Journal of Nonferrous Metals,2013,23(8):2091(in Chinese).
刘文胜,郭伦文,马运柱,等.2A14铝合金热变形的显微组织及流变行为[J].中国有色金属学报,2013,23(8):2091.
13 Ji Hyun Sung, Ji Hoom Kim, Wagoner R H. A plastic constitutive equation incorporating strain-rate,and temperature[J].International Journal of Plasticity,2010,26(12):1746.
14 Cai Yiming,Li Huizhong,Liang Xiaopeng,et al.Thermal deformation behavior for 7039 aluminum alloy at elevated temperature[J].Tran-sactions of Nonferrous Metals Society of China,2008,18(10):1775
15 Jabbari Taleghani M A, Ruiz Navas E M, Salehi M, et al. Hot deformation behavior and flow stress prediction of 7075 aluminum alloy powder compacts during compression at elevated temperatures[J].Materials science and Engineering A,2012,534(1):624.
16 Gourdet S,Montheillet F.A model of continuous dynamic recrystallization[J].Acta Materialia,2003,23(9):2685.
17 Xu X, Yang M, Liang Y L, et al. Research on hot compressive deformation and processing map of 211Z. X heat-resisting high strength aluminium alloy[J].Materials Review B:Research Papers,2016,30(9):143(in Chinese).
徐祥,杨明,梁益龙,等.211Z.X耐热高强韧铝合金热变形行为及加工图研究[J].材料导报:研究篇,2016,30(9):143.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[3] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[4] 程立宏, 周裕琦, 王建峰, 李柱, 穆战, 占小红. 焊丝成分对国产Invar合金GTAW接头组织差异性的影响[J]. 材料导报, 2024, 38(23): 23080151-6.
[5] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[6] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[7] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[8] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[9] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[10] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[11] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[12] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[13] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[14] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[15] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed