Research on Axial Pressure Performance of GFRP-Stone Dust Geopolymer Concrete-Steel Tubular Columns
WANG Tongkuai1,2,3, ZHAO Qi1,2, LEI Ting2,4, YANG Wenwei1,2,*
1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China 2 Ningxia Center for Research on Earthquake Protection and Disaster Mitigation in Civil Engineering, Yinchuan 750021, China 3 School of Architecture and Electrical Engineering, Hezhou University, Hezhou 542899, Guangxi,China 4 Xinhua College of Ningxia University, Yinchuan 750021,China
Abstract: Glass fiber reinforced polymer tube-stone dust geopolymer concrete-steel tubular columns (DSTC-GC) is a new type of composite column obtained by replacing ordinary concrete with waste marble dust geopolymer concrete. A total of 11 specimens were designed and manufactured to study the axial compression performance of glass fiber reinforced polymer (GFRP) and steel tube thickness, concrete type, section hollow ratio and other parameters. The results show that the DSTC-GC specimen has three typical failure modes, and the curve of the specimen shows typical bilinear strengthening. Compared with the ordinary concrete DSTC specimen, it is found that the load-steel tube strain curve has a gentle yield step. GFRP and steel tube have obvious influence on the mechanical properties and deformation of the specimens. Reasonable hollow ratio is beneficial to improve the efficiency and ductility of DSTC-GC specimens. When the content of waste stone powder is 50% (mass fraction), the axial compression performance of DSTC-GC specimen is better, while the axial compression performance of ordinary concrete DSTC specimen is better than that of DSTC-GC. Based on the test results, the functional relationship between fcc/fc0, εcc/εc0 and λt is established. It is found that Gao et al. ' s model is more suitable for the bearing capacity calculation of DSTC-GC specimens.
1 Zhang J T. Study on the influence of marble powder on physical and mechanical properties of cement-based materials. Ph.D. Thesis, Guangxi University, China, 2019 (in Chinese). 张金团. 大理石粉对水泥基材料物理力学性能影响研究. 博士学位论文, 广西大学, 2019. 2 Al-Majidi M H, Lampropoulos A, Cundy A, et al. Construction and Building Materials, 2016, 120, 198. 3 Wang L, Li J C, Zhang X W, et al. Inorganic Chemicals Industry, 2022, 54(2),16(in Chinese). 王磊, 李金丞, 张晓伟, 等. 无机盐工业, 2022, 54(2), 16. 4 Yang D, Lu M Y, Song D, et al. Materials Reports, 2021, 35(Z1), 644(in Chinese). 杨达, 卢明阳, 宋迪, 等. 材料导报, 2021, 35(Z1), 644. 5 Simão L, Hotza D, Ribeiro M J, et al. Construction and Building Mate-rials, 2020, 257, 119525. 6 Alyamaç K E, Aydin A B. KSCE Journal of Civil Engineering, 2015, 19(7), 2208. 7 Cheng S. Behavior of hybrid columns of concrete-filled square steel tube with FRP-confined concrete core under axial compression and seismic loading. Ph.D. Thesis, Tsinghua University, China, 2016(in Chinese). 程实. 配置复材管内约束的方钢管混凝土柱轴压及抗震性能研究. 博士学位论文, 清华大学, 2016. 8 Yu T, Teng J G, Wong Y L. Journal of Structural Engineering, 2010, 136(4), 379. 9 Zhang B, Huang T. Joural of Nanjing Tech University (Natural Science Edition), 2017, 39(5), 140(in Chinese). 张冰, 黄涛. 南京工业大学学报(自然科学版), 2017, 39(5), 140. 10 Metallic materials: tensile testing: part 1: method of test at room temperature: GB/T 228.1-2010, China Standard Press, China, 2010. pp. 1 (in Chinese) 金属材料拉伸试验: 第1部分: 室温试验方法: GB/T 228.1-2010, 中国标准出版社, 2010, pp. 1. 11 Zhang N, Zheng Y C, Zhao Z W, et al. Journal of Building Materials, 2021, 24(3), 571(in Chinese). 张霓, 郑晨阳, 赵中伟, 等.建筑材料学报, 2021, 24(3), 571. 12 Fu B, Yang Z X, Bai X Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(10), 3115(in Chinese). 傅博, 杨自祥, 白雪玉, 等. 硅酸盐通报, 2020, 39(10), 3115. 13 Shen G K, Qi Y J, Lu J C, et al. Acta Materiae Compositae Sinica, 2022, 39(7), 3388(in Chinese). 沈高奎, 齐玉军, 陆建成, 等.复合材料学报, 2022, 39(7), 3388. 14 Li Z F, Chen J P, Yang L, et al. Chinese Journal of Engineering, 2021, 43(6), 768(in Chinese). 李召峰, 陈经棚, 杨磊, 等. 工程科学学报, 2021, 43(6), 768. 15 Wang G F, Wei Y, Miao K T, et al. Acta Materiae Compositae Sinica, 2022, 39(8), 3982(in Chinese). 王高飞, 魏洋, 缪坤廷, 等.复合材料学报, 2022, 39(8), 3982.. 16 Xiang Z H, Zhou J, Niu J G, et al. Acta Materiae Compositae Sinica, 2022, 39(10), 4824(in Chinese). 相泽辉, 周杰, 牛建刚, 等.复合材料学报, 2022, 39(10), 4824. 17 Wu D C. Reseach on Capacity of GFRP-Concrete-Steel Double-Skin Tubular Columns. Master's Thesis, Northeast Petroleum University, China, 2014(in Chinese). 吴殿臣. GFRP管-混凝土-钢管组合短柱承载力分析.硕士学位论文, 东北石油大学, 2014. 18 Gao D Y, Wang D. China Journal of Highway and Transport, 2015, 28(2), 43(in Chinese). 高丹盈, 王代.中国公路学报, 2015, 28(2), 43. 19 Wang J, Zhao J H, Li N, et al. Journal of Xi'an University of Architecture & Technology (Natual Science Edition), 2013, 45(5), 633(in Chinese). 王娟, 赵均海, 李楠, 等. 西安建筑科技大学学报(自然科学版), 2013, 45(5), 633. 20 Wen J P. Research on the mechanical properties of axially loaded GFRP-strength concrete-steel double-skin tubular columns. Master's Thesis, Northeastern University, China, 2011(in Chinese). 温建萍. GFRP管-高强混凝土-钢管组合柱轴压力学性能研究. 硕士学位论文, 东北大学, 2011. 21 Yan Y. Tests of GFRP-concrete-steel double skin tubular short columns under axial compression. Master's Thesis, Huaqiao University, China, 2017(in Chinese). 颜琰. GFRP-混凝土-钢管中空夹层复合结构短柱轴压性能试验研究.硕士学位论文, 华侨大学, 2017. 22 Wang J, Liu W Q, Fang H, et al. Building Structure, 2012(2), 133. (in Chinese). 王俊, 刘伟庆, 方海, 等. 建筑结构, 2012(2), 133.