Experimental Study on the Bearing Capacity of Basalt-Polypropylene Coarse Fiber/Concrete Pipe
LIANG Ninghui1,2, ZHOU Kan1,2, LAN fei1,2, LIU Xinrong1,2, DENG Zhiyun3
1 School of Civil Engineering, Chongqing University, Chongqing 400044, China 2 National Joint Engineering Research Center for Prevention and Control of Environmental Geological Hazards in the TGR Area, Chongqing University, Chongqing 400044, China 3 Department of Water Conservancy and Hydropower Engineering, Tsinghua University, Beijing 100084, China
Abstract: In order to improve the defects such as easy cracking and poor long-lastingness of the concretepipe, fiber-based concrete has good crack resistance and durability, and the coarse fiber and basalt fiber of polypropylene are selected, and the fiber-free, single-doped basalt fiber and mono-mixed polypropylene are designed The four groups of concrete pipe knots mixed with basalt-polypropylene coarse fibers were compared and analyzed by three-point tests to analyze the cracking damage pattern, load-displacement curve and carrying capacity of the pipe section, and a numerical model of the three-point test of the fiber concrete pipe section was established. The influence of polypropylene coarse fiber and basalt fiber on the destructive form and carrying capacity of the concrete pipe is further explored. The results show that polypropylene coarse fiber can effectively improve the damage form of concrete pipe, improve the anti-cracking performance and carrying capacity of concrete pipe section, and improve the carrying capacity of B2P4 mixed with basalt-polypropylene coarse fiber pipe by 46.26% compared with fiber-free pipe. In addition, the numerical simulation results of each group of pipe sections are consistent with the test results, and the carrying capacity error is controlled within 5%, which shows that the simulation is reasonable. Through testing and numerical simulation, the optimal doping of basalt-polypropylene coarse fibers to improve the anti-cracking performance and carrying capacity of concrete pipe sections is obtained.
1 Zeng W, Ding Y N. Journal of Composites, 2020, 37 (9), 2314 (in Chinese). 曾伟, 丁一宁.复合材料学报, 2020, 37(9), 2314. 2 Kabay N. Construction & Building Materials, 2014, 50, 95. 3 Zhou C. Study on impact resistance of plastic steel fiber recycled concrete. Master's Thesis, Liaoning University of Technology, China, 2014(in Chinese). 周聪. 塑钢纤维再生混凝土抗冲击性能研究. 硕士学位论文, 辽宁工业大学, 2014. 4 Wang X Z,He J J, Zou H F, et al. China Concrete and Cement Products, 2014 (5), 50 (in Chinese). 王学志, 贺晶晶, 邹浩飞, 等. 混凝土与水泥制品, 2014 (5), 50. 5 Fu Q,Niu D, Zhang J, et al. Archives of Civil & Mechanical Engineering, 2018, 18(3), 914. 6 Zhang H, Wang L, Bai L, et al. Construction and Building Materials, 2019, 204, 303. 7 Shi F, Pham T M, Hao H, et al. Construction and Building Materials, 2020, 262(2), 1. 8 Xue M K. Study on the dynamic properties of basalt and polypropylene double-doped fiber concrete. Master's Thesis, Anhui University of Science and Technology, China, 2018(in Chinese). 薛明凯. 玄武岩与聚丙烯双掺纤维混凝土力学性能研究. 硕士学位论文, 安徽理工大学, 2018. 9 Zhao B B,He J J, Wang X Z , et al. China Concrete and Cement Pro-ducts, 2014 (8), 51 (in Chinese). 赵兵兵, 贺晶晶, 王学志, 等. 混凝土与水泥制品, 2014(8), 51. 10 Wang X Z, He J J, Zou H F, et al. Concrete, 2014(4), 82 (in Chinese). 王学志, 贺晶晶, 邹浩飞, 等.混凝土, 2014(4), 82. 11 Mohamed N , Soliman A M , Nehdi M L . Construction & Building Materials, 2014, 72, 411. 12 Park Y , Abolmaali A , Beakley J , et al.Engineering Structures, 2015, 100(OCT.1), 731. 13 GB/T 11836—2009. Concrete and reinforced concrete drains. China Standard Press, China, 2009(in Chinese). GB/T 11836—2009. 混凝土和钢筋混凝土排水管, 中国标准出版社, 2009. 14 DL/T 5330—2015. Hydraulic concrete fit than design procedures. China Electricity Press, China, 2015 (in Chinese). DL/T 5330—2015. 水工混凝土配合比设计规程,中国电力出版社,2015. 15 Zhu H T, Gao D Y, Wang Z Q. Journal of Architectural Structures, 2010, 31(1), 41(in Chinese). 朱海堂, 高丹盈, 王占桥.建筑结构学报, 2010, 31(1), 41. 16 Liang N H, Hu Y, Zhong Y, et al. Journal of Chongqing University, 2019, 42 (11), 38(in Chinese). 梁宁慧, 胡杨, 钟杨, 等. 重庆大学学报, 2019, 42(11), 38. 17 Deng Z C, Li J H, Wang X W, et al. Concrete, 2006(9), 65 (in Chinese). 邓宗才, 李建辉, 王现卫, 等. 混凝土, 2006(9), 65. 18 Sun X, Gao Z, Cao P, et al.Construction and Building Materials, 2019, 225(20), 788. 19 ArsIan M E.Construction and Building Materials, 2016, 114, 383. 20 Deng Z, Liu X, Yang X, et al.Structural Concrete, 2020, 3, 1. 21 梁宁慧, 邓志云, 黄军, 等. 中国专利, CN211104712U, 2020. 22 CECS 13:2009. Fiber Concrete Test Method Standard, China Planning Press, 2010(in Chinese). CECS 13:2009. 纤维混凝土试验方法标准, 中国计划出版社, 2010. 23 Liang N H. Multi-scale polypropylene fiber concrete mechanics perfor-mance test and pull pressure damage model study. Ph.D. Thesis, Chongqing University, China, 2014(in Chinese). 梁宁慧. 多尺度聚丙烯纤维混凝土力学性能试验和拉压损伤本构模型研究. 博士学位论文,重庆大学, 2014. 24 GB/T 16752—2017. Concrete and Reinforced Concrete Drainage Pipe Test Method, China Standard Press, China, 2017(in Chinese). GB/T 16752—2017. 混凝土和钢筋混凝土排水管试验方法, 中国标准出版社, 2017. 25 ASTM C497-19. Standard test methods for concrete pipe, concrete box sections, manhole sections, or tile (Metric), West Conshohocken, PA, ASTM International, 2019. 26 Naaman A E, Reinhardt H W. Materials and Structures, 2004, 36(10), 710. 27 Li Q F, Kuang Y H, Guo W. Zhengzhou University Journal (Engineering Edition), 2021, 42(2), 43(in Chinese). 李清富, 匡一航, 郭威. 郑州大学学报(工学版), 2021, 42(2), 43. 28 Liu X R, Chen P, Deng Z Y, et al. Journal of Composites, 2021, 38(12), 4349. 刘新荣, 陈鹏, 邓志云, 等. 复合材料学报, 2021, 38(12), 4349. 29 Deng Z, Liu X, Chen P, et al. Structural Concrete, 2021;https://doi.org/10.1002/suco.202000760 30 Rikabi F, Sargand S M, Hussein H H. Journal of Testing and Evaluation, 2020, 48(2), 871. 31 Zile E, Zile O.Cement and Concrete Research, 2013, 44, 18.