Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21100164-8    https://doi.org/10.11896/cldb.21100164
  无机非金属及其复合材料 |
玄武岩-聚丙烯粗纤维混凝土管承载力试验研究
梁宁慧1,2, 周侃1,2, 兰菲1,2, 刘新荣1,2, 邓志云3
1 重庆大学土木工程学院,重庆 400044
2 重庆大学库区环境地质灾害防治国家地方联合工程研究中心,重庆 400044
3 清华大学水利水电工程系,北京 100084
Experimental Study on the Bearing Capacity of Basalt-Polypropylene Coarse Fiber/Concrete Pipe
LIANG Ninghui1,2, ZHOU Kan1,2, LAN fei1,2, LIU Xinrong1,2, DENG Zhiyun3
1 School of Civil Engineering, Chongqing University, Chongqing 400044, China
2 National Joint Engineering Research Center for Prevention and Control of Environmental Geological Hazards in the TGR Area, Chongqing University, Chongqing 400044, China
3 Department of Water Conservancy and Hydropower Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 9248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善素混凝土管易开裂、延性差等缺陷,基于纤维混凝土良好的抗裂性和耐久性,选用聚丙烯粗纤维和玄武岩纤维,设计了无纤维、单掺玄武岩纤维、单掺聚丙烯粗纤维及混掺玄武岩-聚丙烯粗纤维的四组混凝土管节,通过三点试验对比分析管节的开裂破坏形态、荷载-位移曲线和承载力,并建立纤维混凝土管节三点试验的数值模型,进一步探究聚丙烯粗纤维与玄武岩纤维对素混凝土管破坏形态和承载力的影响。结果表明,聚丙烯粗纤维可有效地改善混凝土管的破坏形态,提高混凝土管节的抗裂性能与承载能力,相比于无纤维管节,混掺玄武岩-聚丙烯粗纤维管B2P4的承载力提升了46.26%,效果最佳。此外,各组管节数值模拟结果与试验结果较为一致,承载力误差控制在5%以内,表明模拟合理。通过试验和数值模拟,获得提升混凝土管节抗裂性能和承载力的玄武岩-聚丙烯粗纤维的最佳掺量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁宁慧
周侃
兰菲
刘新荣
邓志云
关键词:  玄武岩-聚丙烯粗纤维  素混凝土管  三点试验  承载力  数值模拟    
Abstract: In order to improve the defects such as easy cracking and poor long-lastingness of the concretepipe, fiber-based concrete has good crack resistance and durability, and the coarse fiber and basalt fiber of polypropylene are selected, and the fiber-free, single-doped basalt fiber and mono-mixed polypropylene are designed The four groups of concrete pipe knots mixed with basalt-polypropylene coarse fibers were compared and analyzed by three-point tests to analyze the cracking damage pattern, load-displacement curve and carrying capacity of the pipe section, and a numerical model of the three-point test of the fiber concrete pipe section was established. The influence of polypropylene coarse fiber and basalt fiber on the destructive form and carrying capacity of the concrete pipe is further explored. The results show that polypropylene coarse fiber can effectively improve the damage form of concrete pipe, improve the anti-cracking performance and carrying capacity of concrete pipe section, and improve the carrying capacity of B2P4 mixed with basalt-polypropylene coarse fiber pipe by 46.26% compared with fiber-free pipe. In addition, the numerical simulation results of each group of pipe sections are consistent with the test results, and the carrying capacity error is controlled within 5%, which shows that the simulation is reasonable. Through testing and numerical simulation, the optimal doping of basalt-polypropylene coarse fibers to improve the anti-cracking performance and carrying capacity of concrete pipe sections is obtained.
Key words:  basalt-polypropylene coarse fiber    plain concrete pipe    three-point test    bearing capacity    numerical simulation
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TU528.58  
基金资助: 横向科研项目自然科学类(H20211094;H20210058);重庆市自然科学基金资助项目(cstc2018jscx-mszdX0071)
通讯作者:  梁宁慧,通信作者,重庆大学土木工程学院副教授、硕士研究生导师。1993年本科毕业于长安大学建筑工程系,2005年在重庆大学土木工程学院硕士毕业,2014年在重庆大学获土木工程专业博士学位。目前主要从事地下空间开发与利用、隧道病害及防治、纤维混凝土性能研究及其在地下结构工程中的应用等方面的研究工作,发表学术论文30余篇。   
引用本文:    
梁宁慧, 周侃, 兰菲, 刘新荣, 邓志云. 玄武岩-聚丙烯粗纤维混凝土管承载力试验研究[J]. 材料导报, 2023, 37(11): 21100164-8.
LIANG Ninghui, ZHOU Kan, LAN fei, LIU Xinrong, DENG Zhiyun. Experimental Study on the Bearing Capacity of Basalt-Polypropylene Coarse Fiber/Concrete Pipe. Materials Reports, 2023, 37(11): 21100164-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100164  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21100164
1 Zeng W, Ding Y N. Journal of Composites, 2020, 37 (9), 2314 (in Chinese).
曾伟, 丁一宁.复合材料学报, 2020, 37(9), 2314.
2 Kabay N. Construction & Building Materials, 2014, 50, 95.
3 Zhou C. Study on impact resistance of plastic steel fiber recycled concrete. Master's Thesis, Liaoning University of Technology, China, 2014(in Chinese).
周聪. 塑钢纤维再生混凝土抗冲击性能研究. 硕士学位论文, 辽宁工业大学, 2014.
4 Wang X Z,He J J, Zou H F, et al. China Concrete and Cement Products, 2014 (5), 50 (in Chinese).
王学志, 贺晶晶, 邹浩飞, 等. 混凝土与水泥制品, 2014 (5), 50.
5 Fu Q,Niu D, Zhang J, et al. Archives of Civil & Mechanical Engineering, 2018, 18(3), 914.
6 Zhang H, Wang L, Bai L, et al. Construction and Building Materials, 2019, 204, 303.
7 Shi F, Pham T M, Hao H, et al. Construction and Building Materials, 2020, 262(2), 1.
8 Xue M K. Study on the dynamic properties of basalt and polypropylene double-doped fiber concrete. Master's Thesis, Anhui University of Science and Technology, China, 2018(in Chinese).
薛明凯. 玄武岩与聚丙烯双掺纤维混凝土力学性能研究. 硕士学位论文, 安徽理工大学, 2018.
9 Zhao B B,He J J, Wang X Z , et al. China Concrete and Cement Pro-ducts, 2014 (8), 51 (in Chinese).
赵兵兵, 贺晶晶, 王学志, 等. 混凝土与水泥制品, 2014(8), 51.
10 Wang X Z, He J J, Zou H F, et al. Concrete, 2014(4), 82 (in Chinese).
王学志, 贺晶晶, 邹浩飞, 等.混凝土, 2014(4), 82.
11 Mohamed N , Soliman A M , Nehdi M L . Construction & Building Materials, 2014, 72, 411.
12 Park Y , Abolmaali A , Beakley J , et al.Engineering Structures, 2015, 100(OCT.1), 731.
13 GB/T 11836—2009. Concrete and reinforced concrete drains. China Standard Press, China, 2009(in Chinese).
GB/T 11836—2009. 混凝土和钢筋混凝土排水管, 中国标准出版社, 2009.
14 DL/T 5330—2015. Hydraulic concrete fit than design procedures. China Electricity Press, China, 2015 (in Chinese).
DL/T 5330—2015. 水工混凝土配合比设计规程,中国电力出版社,2015.
15 Zhu H T, Gao D Y, Wang Z Q. Journal of Architectural Structures, 2010, 31(1), 41(in Chinese).
朱海堂, 高丹盈, 王占桥.建筑结构学报, 2010, 31(1), 41.
16 Liang N H, Hu Y, Zhong Y, et al. Journal of Chongqing University, 2019, 42 (11), 38(in Chinese).
梁宁慧, 胡杨, 钟杨, 等. 重庆大学学报, 2019, 42(11), 38.
17 Deng Z C, Li J H, Wang X W, et al. Concrete, 2006(9), 65 (in Chinese).
邓宗才, 李建辉, 王现卫, 等. 混凝土, 2006(9), 65.
18 Sun X, Gao Z, Cao P, et al.Construction and Building Materials, 2019, 225(20), 788.
19 ArsIan M E.Construction and Building Materials, 2016, 114, 383.
20 Deng Z, Liu X, Yang X, et al.Structural Concrete, 2020, 3, 1.
21 梁宁慧, 邓志云, 黄军, 等. 中国专利, CN211104712U, 2020.
22 CECS 13:2009. Fiber Concrete Test Method Standard, China Planning Press, 2010(in Chinese).
CECS 13:2009. 纤维混凝土试验方法标准, 中国计划出版社, 2010.
23 Liang N H. Multi-scale polypropylene fiber concrete mechanics perfor-mance test and pull pressure damage model study. Ph.D. Thesis, Chongqing University, China, 2014(in Chinese).
梁宁慧. 多尺度聚丙烯纤维混凝土力学性能试验和拉压损伤本构模型研究. 博士学位论文,重庆大学, 2014.
24 GB/T 16752—2017. Concrete and Reinforced Concrete Drainage Pipe Test Method, China Standard Press, China, 2017(in Chinese).
GB/T 16752—2017. 混凝土和钢筋混凝土排水管试验方法, 中国标准出版社, 2017.
25 ASTM C497-19. Standard test methods for concrete pipe, concrete box sections, manhole sections, or tile (Metric), West Conshohocken, PA, ASTM International, 2019.
26 Naaman A E, Reinhardt H W. Materials and Structures, 2004, 36(10), 710.
27 Li Q F, Kuang Y H, Guo W. Zhengzhou University Journal (Engineering Edition), 2021, 42(2), 43(in Chinese).
李清富, 匡一航, 郭威. 郑州大学学报(工学版), 2021, 42(2), 43.
28 Liu X R, Chen P, Deng Z Y, et al. Journal of Composites, 2021, 38(12), 4349.
刘新荣, 陈鹏, 邓志云, 等. 复合材料学报, 2021, 38(12), 4349.
29 Deng Z, Liu X, Chen P, et al. Structural Concrete, 2021;https://doi.org/10.1002/suco.202000760
30 Rikabi F, Sargand S M, Hussein H H. Journal of Testing and Evaluation, 2020, 48(2), 871.
31 Zile E, Zile O.Cement and Concrete Research, 2013, 44, 18.
[1] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[2] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[3] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[4] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[5] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[6] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[7] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[8] 刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
[9] 刘玉宝, 王举金, 杨文, 刘风琴, 李亚琼, 崔凌霄, 张洋. LaFe合金在底吹氩钢包内熔化混匀的数值模拟研究[J]. 材料导报, 2022, 36(21): 21050172-7.
[10] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[11] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[12] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[13] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[14] 张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
[15] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed