Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 373-377    https://doi.org/10.11896/j.issn.1005-023X.2018.03.005
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
核电主管道不锈钢在高温高压水环境下的疲劳裂纹萌生行为
武焕春1,薛飞1,李成涛1,方可伟1,杨滨2,宋西平3
1 苏州热工研究院有限公司寿命管理技术中心,苏州 215004
2 北京科技大学钢铁共性技术协同创新中心,北京 100083
3 北京科技大学新金属材料国家重点实验室,北京 100083
Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure
Huanchun WU1,Fei XUE1,Chengtao LI1,Kewei FANG1,Bin YANG2,Xiping SONG3
1 Life Assessment Center, Suzhou Nuclear Power Research Institute, Suzhou 215004
2 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083
3 State Key Laboratoryfor Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 2026KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用腐蚀疲劳测试系统研究了高温高压水环境下两种压水堆核电站一回路主管道用不锈钢的腐蚀疲劳裂纹萌生行为。结果表明,316LN奥氏体不锈钢的裂纹主要在材料表面的驻留滑移带处萌生,少量裂纹在两簇驻留滑移带交界的亚晶界面处。含有少量铁素体的Z3CN20.09M奥氏体不锈钢的疲劳裂纹依次在试样表面的驻留滑移带处、相界处和点蚀坑处萌生,但主要是在驻留滑移带处。通过研究高温高压水环境下氧化膜的组成和腐蚀疲劳试样横截面的形貌,分析了疲劳裂纹在滑移带处萌生的机理。最后对比分析两种不锈钢裂纹萌生机制的异同,并讨论了铁素体对材料腐蚀疲劳性能的影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武焕春
薛飞
李成涛
方可伟
杨滨
宋西平
关键词:  不锈钢  腐蚀疲劳  裂纹萌生  高温高压水    
Abstract: 

The behaviors of fatigue crack initiation of 316LN and Z3CN20.09M austenite stainless steels (ASSs) were studied by corrosion fatigue test system in high temperature water. The results indicated that the fatigue cracks were mainly initiated at the persistent slip bands (PSBs) on the surface of 316LN ASS. Only a few cracks were initiated at the sub-grain boundaries. While the fatigue cracks were sequentially initiated at PSBs, phase boundaries and corrosion pits of the Z3CN20.09M ASS containing a little part of ferrite, and they were also mainly initiated at PSBs. The crack initiation mechanism at PSBs was analyzed based on composition of oxide film and morphology of cross section of the specimens tested in high temperature water. Moreover, the difference of the crack initiation mechanisms for two kinds of stainless steel was analyzed. Finally, the effect of the ferrite phase on corrosion fatigue property was summarized.

Key words:  stainless steel    corrosion fatigue    crack initiation    high temperature and high pressure water
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TG142.71  
基金资助: 中国博士后基金(2016M601887);国家自然科学基金(51375182)
作者简介:  武焕春:男,1986年生,博士,主要研究方向为核电用不锈钢的环境失效行为 E-mail: wuhuanchun1@163.com
引用本文:    
武焕春, 薛飞, 李成涛, 方可伟, 杨滨, 宋西平. 核电主管道不锈钢在高温高压水环境下的疲劳裂纹萌生行为[J]. 《材料导报》期刊社, 2018, 32(3): 373-377.
Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure. Materials Reports, 2018, 32(3): 373-377.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.005  或          https://www.mater-rep.com/CN/Y2018/V32/I3/373
Element C Si Mn P S Cr Ni Mo N Fe
316LN 0.02 0.75 2.00 0.045 0.030 17.01 12.53 2.48 0.14 Balance
Z3CN20.09M 0.024 1.09 1.11 0.023 0.039 20.16 9.06 0.26 0.033 Balance
表1  316LN 和Z3CN20.09M奥氏体不锈钢的化学成分(质量分数/%)
Wave shape Strain amplitude Strain rate Temperature Pressure Dissolved oxygen pH Conductivity
Triangular wave ±0.5%,±1.0% 0.1% ·s-1 320/290 ℃ 11/8 MPa 10 mg/L 6.6 0.15 μS/cm
表2  腐蚀疲劳试验参数与水化学参数
图1  316LN不锈钢在320 ℃水环境中不同应变幅下试样表面的腐蚀疲劳裂纹在滑移带处萌生的形貌
图2  316LN不锈钢试样在320 ℃高温高压水环境下形成的氧化膜的 XPS测试结果:(a)Fe 2p3/2,(b)Cr 2p3/2,(c)Ni 2p3/2,(d)Mo 3d3/2
图3  腐蚀疲劳过程中试样表面滑移带的运动模型
图4  316LN不锈钢在320 ℃高温高压水中不同应变幅下腐蚀疲劳实验后试样横截面的形貌
图5  316LN不锈钢在320 ℃水环境中不同应变幅下的腐蚀疲劳裂纹在亚晶界处萌生的形貌
图6  Z3CN20.09M不锈钢在290 ℃水环境下腐蚀疲劳裂纹在相界处萌生的形貌
图7  Z3CN20.09M不锈钢在290 ℃水环境下腐蚀疲劳裂纹在点蚀坑处萌生的形貌
1 Llanes L, Mateo A, Villechaise P , et al. Effect of testing atmosphere (air/in vacuo) on low cycle fatigue characteristics of a duplex stainless steel[J]. International Journal of Fatigue, 1999,21:S119.
2 Sahu J K, Krupp U, Christ H J . Fatigue crack initiation behavior in embrittled austenitic-ferritic stainless steel[J]. International Journal of Fatigue, 2012,45:8.
3 Mateo A, Gironès A, Keichel J , et al. Cyclic deformation behaviour of superduplex stainless steels[J]. Materials Science and Enginee-ring:A, 2001,314:176.
4 Gironès A, Villechaise P, Mateo A , et al. EBSD studies on the influence of texture on the surface damage mechanisms developed in cyclically loaded aged duplex stainless steels[J].Materials Science and Engineering:A, 2004, 387-389:516.
5 Wu X Q, Xu S, Han E H , et al. Corrosion fatigue of nuclear-grade low alloys stainless steel in high temperature water and its environmental fatigue design model[J]. Acta Metallurgica Sinica, 2011,47(7):790(in Chinese).
5 吴欣强, 徐松, 韩恩厚 , 等. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2011,47(7):790.
6 Xu J, Wu X, Han E . The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment[J]. Electrochimica Acta, 2012,71:219.
7 Han E H, Wang J Q, Wu X Q , et al. Corrosion mechanisms of stainless steel and nickel base alloys in high temperature high pressure water[J].Acta Metallurgica Sinica,2010(11):1379(in Chinese).
7 韩恩厚, 王俭秋, 吴欣强 , 等. 核电高温高压水中不锈钢和镍基合金的腐蚀机制[J].金属学报,2010(11):1379.
8 Xu S, Wu X Q, Han E H , et al. Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless steel in high temperature water[J]. Materials Science and Engineering:A, 2008,490:16.
9 Zhao W, Wang Y, Zhang T , et al. Study on the mechanism of high-cycle corrosion fatigue crack initiation in X80 steel[J]. Corrosion Science, 2012,57:99.
10 Roach M D, Wright S I, Lemons J E , et al. An EBSD based comparison of the fatigue crack initiation mechanisms of nickel and nitrogen-stabilized cold-worked austenitic stainless steels[J]. Materials Science and Engineering:A, 2013,586:382.
11 Carstensen J V, Magnin T . Characterisation and quantification of multiple crack growth during low cycle fatigue[J]. International Journal of Fatigue, 2001,23:195.
12 Wu H C, Yang B, Wang S L , et al. Effect of oxidation behavior on the corrosion fatigue crack initiation and propagation of 316LN austenitic stainless steel in high temperature water[J]. Materials Science and Engineering:A, 2015,633:176.
13 Wu H C, Yang B, Shi Y Z , et al. Crack initiation mechanism of Z3CN20.09M duplex stainless steel during corrosion fatigue in water and air at 290 ℃[J]. Journal of Materials Science & Technology, 2015,31:1144.
14 Moulder J F, William F S, Peter E S . Handbook of x-ray and ultraviolet photoelectron spectroscopy[M]. America:Perkin-Elmer Corporation, 1992.
15 Xu S, Wu X Q, Han E H , et al. Study on the fracture of corrosion fatigue crack of the 316Ti stainless steel in simulated nuclear high temperature and high pressure water[J].Journal of Chinese Society for Corrosion and Protection,2010(2):119(in Chinese).
15 徐松, 吴欣强, 韩恩厚 , 等. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J].中国腐蚀与防护学报,2010(2):119.
16 Magnin T, Ramade C, Lepinoux J , et al. Low-cycle fatigue damage mechanisms of F.c.c. and B.c.c. polycrystals: Homologous beha-viour?[J]. Materials Science and Engineering:A, 1989,118:41.
17 Strubbia R, Here?ú S, Giertler A , et al. Experimental characterization of short crack nucleation and growth during cycling in lean duplex stainless steels[J]. International Journal of Fatigue, 2014,65:58.
18 Alvarez-Armas I, Knobbe H, Marinelli M C , et al. Experimental characterization of short fatigue crack kinetics in an austeno-ferritic duplex steel[J]. Procedia Engineering, 2011,10:1491.
19 Man J, Vystavěl T, Weidner A , et al. Study of cyclic strain localization and fatigue crack initiation using FIB technique[J]. International Journal of Fatigue, 2012,39:44.
20 Yi Y, Lee B, Kim S , et al. Corrosion and corrosion fatigue beha-viors of 9Cr steel in a supercritical water condition[J]. Materials Science and Engineering:A, 2006,429:161.
21 Pardo A, Merino M C, Coy A E , et al. Pitting corrosion behaviour of austenitic stainless steels - combining effects of Mn and Mo additions[J]. Corrosion Science, 2008,50:1796.
22 Olsson C A . The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS[J]. Corrosion Science, 1995,37:467.
23 Marinelli M C, Krupp U, Kübbeler M , et al. The effect of the embrittlement on the fatigue limit and crack propagation in a duplex stainless steel during high cycle fatigue[J]. Engineering Fracture Mechanics, 2013,110:421.
24 Alvarez-Armas I, Krupp U, Balbi M , et al. Growth of short cracks during low and high cycle fatigue in a duplex stainless steel[J]. International Journal of Fatigue, 2012,41(8):95.
[1] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[2] 吕润涛, 周张健, 白冰, 杨文. 耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展[J]. 材料导报, 2024, 38(4): 22120065-7.
[3] 赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
[4] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[5] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[6] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[7] 芦燕, 余振超, 王如琦. 模拟海水环境下G20Mn5QT/Q355异种钢对接焊接接头腐蚀疲劳性能试验研究[J]. 材料导报, 2024, 38(19): 22090030-7.
[8] 郑志军, 郑翔. 基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化[J]. 材料导报, 2024, 38(17): 23030304-7.
[9] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[10] 陈宗平, 李健成, 周济. 内置碳钢不锈钢管海洋混凝土柱轴压试验及承载力计算[J]. 材料导报, 2024, 38(12): 22100018-9.
[11] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[12] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[13] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[14] 高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
[15] 张志强, 楚昊然, 张天刚, 路学成, 张宇航, 郭志永. UNS S32750双相不锈钢焊接热影响区微观组织演变[J]. 材料导报, 2023, 37(21): 22050291-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed