Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 368-372    https://doi.org/10.11896/j.issn.1005-023X.2018.03.004
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
腐殖酸基石墨化材料的制备及其电化学性能
司东永,黄光许,张传祥,邢宝林,陈泽华,陈丽薇,张浩然
河南理工大学化学与化工学院,焦作 454003
Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials
Dongyong SI,Guangxu HUANG,Chuanxiang ZHANG,Baolin XING,Zehua CHEN,Liwei CHEN,Haoran ZHANG
College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003
下载:  全 文 ( PDF ) ( 1853KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

以腐殖酸为前驱体,通过高温热处理制备锂离子电池负极材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)和电化学测试系统对该材料的形貌、微晶结构和电化学性能进行表征。结果表明,腐殖酸基石墨化材料呈现出较为规整的石墨片层结构,且随着石墨化温度的升高,所得材料的石墨化度也越来越高。腐殖酸基石墨化材料均表现出良好的电化学性能,石墨化温度为2 800 ℃所制备的石墨化材料的首次放电比容量为356.7 mAh/g,充电比容量为277.6 mAh/g,首次充放电的库仑效率为77.81%,在1C和2C倍率下50次充放电循环后的容量保持率分别高达99.4%、95.9%,是一种理想的锂离子电池负极材料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
司东永
黄光许
张传祥
邢宝林
陈泽华
陈丽薇
张浩然
关键词:  腐殖酸  石墨化材料  锂离子电池  负极材料  电化学性能    
Abstract: 

The lithium-ion battery anode material have been prepared from humic acid through high-temperature heat treatment. The morphology, microcrystalline structure and electrochemical properties of as-prepared activated material were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical testing system. The results indicated that the humic acid-based graphitized materials showed a more regular graphite lamellar structure, and the degree of graphitization of the materials was also getting higher and higher with the increase of graphitization temperature. The humic acid-based graphitized mate-rials all presented good electrochemical performance. The graphitized material with the temperature of 2 800 ℃ had a first discharge specific capacity of 356.7 mAh/g and a charge capacity of 277.6 mAh/g, and the initial coulombic efficiencies was 77.81%. The capacity retention rate after 50 cycles at 1C and 2C rates was as high as 99.4% and 95.9%, respectively. The above results suggest that the humic acid-based graphitized material is an ideal lithium ion battery anode material.

Key words:  humic acid    graphitized material    lithium-ion batteries    anode material    electrochemical performance
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TQ424.1  
基金资助: 国家自然科学基金(U1361119);国家自然科学基金(41472127);国家自然科学基金(41372161);河南省高校科技创新团队(16IRTSTHN005);河南省教育厅自然科学研究计划项目(2011B44006);河南理工大学博士基金(B2010-82)
作者简介:  司东永:男,1990年生,硕士研究生,研究方向为锂离子电池负极材料 E-mail: 849294938@qq.com|张传祥:通信作者,男,1970年生,博士,教授,博士研究生导师,从事煤基炭材料及电化学应用等方面的教学及研究工作 E-mail: zcx223@hpu.edu.cn
引用本文:    
司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials. Materials Reports, 2018, 32(3): 368-372.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.004  或          https://www.mater-rep.com/CN/Y2018/V32/I3/368
图1  山西腐殖酸石墨化材料的SEM图(2 000×)
图2  山西腐殖酸石墨化材料的XRD谱
图3  山西腐殖酸石墨化电极材料在0.1C下的首次充放电曲线
Sample 0.5C
mAh/g
1C
mAh/g
2C
mAh/g
Capacity
retention rate
SX-HA-2200 129.1 90.6 30.4 83.0%
SX-HA-2400 126.6 105.6 38.5 89.3%
SX-HA-2600 216.7 138.6 37.0 90.7%
SX-HA-2800 239.4 200.6 150.7 94.2%
表1  山西腐殖酸石墨化电极材料在不同电流密度下的放电比容量和容量保持率
图4  山西腐殖酸石墨化电极材料的循环及倍率性能曲线(电子版为彩图)
图5  山西腐殖酸石墨化电极材料的循环伏安曲线
1 Tarscon J M, Rrmand M . Review article issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414:359.
2 Armand M, Tarascon J M . Buliding better batteries[J]. Nature, 2008,451(7179):652.
3 Xiao Q, Fan Y, Wang X , et al. A multilayer Si/CNT coaxial nanofiber LIB anode witha high areal capacity[J]. Energy & Environmental Science, 2014,2(7):655.
4 Lv Y C, Li H . Review of basic problems about electrochemical energy storage[J]. Electro-chemistry, 2015,21(5):412(in Chinese).
4 吕迎春, 李泓 . 电化学储能基本问题综述[J]. 电化学, 2015,21(5):412.
5 Sun X L . Preparation and electrochemical performance of carbon anode materials for lithiu-mion battery[D]. Qinhuangdao:Yanshan University, 2010(in Chinese).
5 孙学亮 . 锂离子电池碳负极材料的制备及其电化学性能的研究[D]. 秦皇岛:燕山大学, 2010.
6 Zhang Y G . Modification and surface treatment of carbon materials used as anode lithium ion secondary battery[D]. Tianjin:Tianjin University, 2004(in Chinese).
6 张永刚 . 锂离子二次电池炭负极材料的改性与修饰[D]. 天津:天津大学, 2004.
7 Wang W Y . Study on needle coke coated by phenolic resin used for lithium ion batteries[D]. Tianjin:Tianjin University, 2007(in Chinese).
7 王文燕 . 酚醛树脂包覆针状焦作为锂离子电池负极材料的研究[D]. 天津:天津大学, 2007.
8 Liu S H , et al. Improving the electrochemical properties of natural graphite spheres by coating with a pyrolytic carbon shell[J]. New Carbon Materials, 2008,23(1):30.
9 Zhang F L, Zhang S Y, Wu S . Present situation and future prospect of China graphite industry[J]. Carbon Technology, 2015,34(5):1(in Chinese).
9 张福良, 张世洋, 吴珊 . 中国石墨产业发展现状及未来展望[J]. 炭素技术, 2015,34(5):1.
10 Shen W C , et al. Current situation and development of Chinese graphite industry[J]. China Nonferrous Metals Industry,2013(2):1(in Chinese).
10 沈万慈 , 等. 石墨产业的现状与发展[J].中国非金属矿工业导刊,2013(2):1.
11 Zhao P , et al. Biotechnology humic acids-based electrospun carbon nanofibers as cost efficient electrodes for lithium-ion batteries[J]. Electrochimica Acta, 2016,203:66.
12 Cheng L , et al. Research progress of humic-acid containing fertilizer[J].Soil and Fertilizer Sciences,2011(5):1(in Chinese).
12 程亮 , 等. 腐殖酸肥料的研究进展[J].中国土壤与肥料,2011(5):1.
13 Han G H , et al. High-temperature oxidation behavior of vanadium, titanium-bearing magnetite pellet[J]. Journal of Iron and Steel Research, 2011,18(8):14.
14 Qazi U Y, Javaid R . Composite nanostructures with metal components[J]. Advances in Nanoparticles, 2016,5(1):27.
15 Kim B H , et al. Solvent-induced porosity control of carbon nanofiber webs for supercapacitor[J]. Journal of Power Sources, 2011,196(23):10496.
16 Jia K , et al. Solution blown aligned carbon nanofiber yarn as supercapacitor electrode[J]. Journal of Materials Science:Materials in Electronics, 2013,24(12):4769.
17 Zhao Y . Research of graphitized needle coke coated by phenolic resin pyrolytic carbon as anode material for lithium ion battery[D]. Shanghai:East China University of Science and Technology, 2012(in Chinese).
17 赵跃 . 酚醛树脂热解炭包覆石墨化针状焦用于锂离子电池负极材料的研究[D]. 上海:华东理工大学, 2012.
18 Tian L L , et al. Insertion and release mechanism of lithium ion in graphene materials[J].Science China Press,2011(18):1431(in Chinese).
18 田雷雷 , 等.锂离子在石墨烯材料中的嵌入脱出机制[J].科学通报, 2011(18):1431.
19 Lu M, Cheng H, Yang Y . A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells[J]. Electrochimica Acta, 2008,53(9):3539.
20 Guo D C , et al. Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery[J]. New Carbon Materials, 2015,30(5):419(in Chinese).
20 郭德超 , 等. 微膨石墨锂离子电池负极材料的制备及电化学性能[J]. 新型炭材料, 2015,30(5):419.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[3] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[4] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[5] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[6] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[7] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[8] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[9] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[10] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[11] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[12] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[13] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[14] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[15] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed