Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 919-922    https://doi.org/10.11896/cldb.201906001
  无机非金属及其复合材料 |
具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能
莫松平1, 郑麟1, 袁潇1, 林潇晖1, 潘婷1, 贾莉斯1, 陈颖1, 成正东1,2
1 广东工业大学材料与能源学院,广东省功能软凝聚态物质重点实验室,广州 510006
2 德州农工大学化工系,美国德州大学城 77843-3122
Liquid-solid Phase Change Cycling Performance of Zirconium Phosphate Suspensions with High Dispersion Stability
MO Songping1, ZHENG Lin1, YUAN Xiao1, LIN Xiaohui1, PAN Ting1, JIA Lisi1, CHEN Ying1, CHENG Zhengdong1,2
1 Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006
2 Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122, USA
下载:  全 文 ( PDF ) ( 1986KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于纳米颗粒有聚集和沉降的倾向,纳米悬浮液作为一种相变材料,其液固相变循环稳定性与其冷冻/熔化性能一样重要,然而相关研究却很少。本研究将具有高分散稳定性的磷酸锆(ZrP)碟片悬浮液作为一种新型相变材料,并将其冷冻/熔化性能和循环稳定性与水和石墨烯纳米悬浮液进行比较。实验结果表明:所有样品的过冷度随着冷冻/熔化循环次数的增加而减少;在相同次数的冷冻/熔化循环中,ZrP和石墨烯纳米悬浮液的过冷度比水低,且粒子浓度较大的纳米悬浮液过冷度较小。分析表明,ZrP和石墨烯纳米片和冰晶均可诱导纳米悬浮液中的成核。与石墨烯纳米悬浮液相比,ZrP纳米悬浮液的过冷度在粒子质量浓度为0.1%时较大,但在质量浓度为1.0%时较小。比较两种纳米悬浮液经过冷冻/熔化循环后的分散稳定性,结果表明,与石墨烯纳米悬浮液相比,ZrP纳米悬浮液具有更好的液固相变循环稳定性,因而能更有效减小过冷度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
莫松平
郑麟
袁潇
林潇晖
潘婷
贾莉斯
陈颖
成正东
关键词:  相变材料  纳米悬浮液  循环稳定性  磷酸锆  石墨烯    
Abstract: Liquid-solid phase change cycling stability is as important as its freezing/melting performance for nanosuspensions as phase change mate-rials, because nanoparticles tend to aggregate and settle down. However, it has been rarely studied. In this study, zirconium phosphate (ZrP) nanosuspensions with high dispersion stability is proposed as a novel phase change material. Its freezing/melting performance and cycling stability were compared with water and graphene (GN) nanosuspensions. Results showed that the subcooling degree (SD) of all the samples decreased with increased freezing/melting cycle. At the same freezing/melting cycle, the SD of the ZrP and GN nanosuspensions were reduced compared with water. The nanosuspensions with higher nanoparticle concentration exhibited lower SD. The results suggested that both the ZrP and GN nanoplatelets and ice crystals could induce nucleation in the nanosuspensions. In comparison with the GN nanosuspensions, the SD of the ZrP nanosuspensions was higher at 0.1wt% but lower at 1.0wt% particle concentration. Dispersion stabilities of both nanosuspensions after freezing/melting cycles were then compared. Results showed that compared with the GN nanosuspensions, the ZrP nanosuspensions had higher dispersion stability, thus were able to reduce SD more effectively.
Key words:  phase change material    nanosuspension    cycling stability    zirconium phosphate    graphene
                    发布日期:  2019-04-03
ZTFLH:  TK124  
基金资助: 国家自然科学基金(51576050);广东省公益研究与能力建设专项(2015A010106013);广州市科技计划项目(201704030107;2016201604030063)
作者简介:  莫松平,广东工业大学副教授,硕士研究生导师,获中国科学技术大学学士和博士学位,2016年8月—2017年7月国家公派美国德州农工大学访问学者。
引用本文:    
莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
MO Songping, ZHENG Lin, YUAN Xiao, LIN Xiaohui, PAN Ting, JIA Lisi, CHEN Ying, CHENG Zhengdong. Liquid-solid Phase Change Cycling Performance of Zirconium Phosphate Suspensions with High Dispersion Stability. Materials Reports, 2019, 33(6): 919-922.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906001  或          http://www.mater-rep.com/CN/Y2019/V33/I6/919
1 Cheralathan M, Velraj R, Renganarayanan S. International Journal of Energy Research,2007,31(14),1398.
2 Stritih U, Butala V. International Journal of Energy Research,2007,31(15),1532.
3 Veerakumar C, Sreekumar A. International Journal of Refrigeration-Revue Internationale Du Froid,2016,67,271.
4 Mo S P, Chen Y, Jia L, et al. Applied Energy,2012,93,65.
5 Chandrasekaran P, Cheralathan M, Kumaresan V, et al. Energy,2014,72,636.
6 Wang X J, Li X F, Xu Y H, et al. Energy,2014,78,212.
7 Altohamy A A, Rabbo M F A, Sakr R Y, et al. Applied Thermal Engineering,2015,84,331.
8 Li X, Chen Y, Cheng Z D, et al. Applied Energy,2014,130,824.
9 Fan L W, Yao X L, Wang X, et al. Applied Energy,2015,138,193.
10 Sathishkumar A, Kumaresan V, Velraj R. International Journal of Refrigeration-Revue Internationale Du Froid,2016,66,73.
11 Jia L S, Chen Y, Lei S J, et al. Applied Energy,2016,162,1670.
12 Mejia A F, Chang Y W, Ng R, et al. Physical Review E,2012,85(6),061708.
13 Shuai M, Mejia A F, Chang Y W, et al. Crystengcomm,2013,15(10),1970.
14 Sun D Z, Sue H J, Cheng Z D, et al. Physical Review E,2009,80(4),041704.
15 Kaschak D M, Johnson S A, Hooks D E, et al. Journal of the American Chemical Society,1998,120(42),10887.
16 Mo S P, Chen Y, Cheng Z D, et al. Thermochimica Acta,2015,605, 1.
17 Shao X F, Mo S P, Chen Y, et al. Applied Thermal Engineering,2017,117,427.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[5] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[10] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[13] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[14] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[15] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed