Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 991-999    https://doi.org/10.11896/cldb.201906015
  无机非金属及其复合材料 |
喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理
王家滨1, 牛荻涛2,3
1 西安工业大学建筑工程学院,西安 710021
2 西安建筑科技大学土木工程学院,西安 710055
3 西安建筑科技大学西部绿色建筑国家重点实验室, 西安 710055
Nitric Acid Immersion Corrosion of Shotcrete Lining: Diffusion Law of Hydrogen Ions (H+) and Nitrite Ions (NO3-), and the Corrosion Mechanism
WANG Jiabin1, NIU Ditao2,3
1 School of Civil & Architecture Engineering, Xi’an Technological University, Xi’an 710021
2 College of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055
3 National Key Laboratory of Green Building in West China, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 3809KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 一般大气环境下长大公路隧道中,喷射混凝土单层衬砌往往会遭受硝酸侵蚀,导致耐久性恶化及使用寿命降低。本研究以硝酸溶液为侵蚀介质,针对制备的普通喷射混凝土、钢纤维喷射混凝土和模筑混凝土开展浸泡试验。通过测试混凝土不同深度处孔溶液pH值和NO3-含量,分析喷射混凝土硝酸侵蚀过程。对硝酸侵蚀后试件的矿物组成和微观结构进行表征,以研究孔溶液中H+和NO3-的扩散机理。实验结果表明,喷射混凝土孔溶液H+和NO3-含量均小于模筑混凝土,即喷射混凝土抗硝酸侵蚀耐久性更优。侵蚀溶液pH值不大于2时,钢纤维喷射混凝土孔溶液中H+和NO3-含量与普通喷射混凝土差异较小,说明钢纤维对较高浓度硝酸侵蚀环境下喷射混凝土耐久性能的提升作用不明显。针对喷射混凝土硝酸侵蚀机理的分析表明,硝酸侵蚀喷射混凝土的过程可分为水化产物反应、水化硅酸钙凝胶分解和钙矾石及骨料侵蚀等三个阶段。因此,孔溶液H+在侵蚀早期增长速度快于侵蚀后期;NO3-含量则随侵蚀过程的推移而快速增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家滨
牛荻涛
关键词:  喷射混凝土  硝酸侵蚀  孔溶液pH值  氢离子(H+)含量  硝酸根离子(NO3-)含量  离子扩散机理    
Abstract: The commonly used single-layer shotcrete linings in long highway tunnels under general atmospheric environment usually suffer nitric acid corrosion, and as consequences, the durability and service lifetime are prone to deterioration. This paper presents the experimental study and the mechanism analysis over the diffusion of hydrogen ions (H+) and nitrate ions (NO3-) in the pore solution of shotcrete lining experiencing immersion corrosion in nitric acid. The nitric acid (with pH values of 1, 2 and 3) immersion tests upon a series of specimens of ordinary shotcrete, steel-fiber-reinforced shotcrete and cast concrete were conducted. The changes in physical and mechanical properties of the specimens during the entire 180 d immersion process were measured, and the H+ and NO3- concentration gradients along vertical (depth) direction for the pore solution within the three kinds of concrete specimens were investigated systematically by varying the nitric acid pH value and immersion duration. Moreover, the mineral composition determination and microstructure observation for the corrosion products were also carried out, and the diffusion laws of H+ and NO3- in the pore solution were analyzed. As was expected, both of the H+ and NO3- concentrations of pore solution within shotcrete specimens were found to be lower than those for cast concrete specimens, confirming a higher resistance against nitric acid corrosion for shotcrete. The steel fiber addition has inconspicuous effect for the durability improvement of shotcrete under relatively high-concentration nitrate corrosive circumstances, as nearly no difference could be identified for H+/NO3- concentrations between ordinary shotcrete specimens and steel-fiber-reinforced shotcrete specimens, both of which were immersed in pH≤2 nitric acid. It was concluded according to the corrosion mechanism analysis that the corrosion process of shotcrete in nitric acid includes three steps: reaction of hydration products (with the acid), decomposition of calcium silicate hydrate gel, and corrosion of ettringite and aggregate. Therefore, the pore solution within shotcrete displayed an H+ content change tendency of rapid increase (early stage) and subsequent slower increase (late stage), while on the other hand, a NO3- content change tendency of always fast increase, as the corrosion getting processed.
Key words:  shotcrete    nitric acid corrosion    pH value of pore solution    hydrogen ion (H+) concentration    nitric ion (NO3-) concentration    ion diffusion law
                    发布日期:  2019-04-03
ZTFLH:  TU528.44  
基金资助: 国家自然科学基金重大项目支课题(51590914);陕西省自然科学基金(2018JQ5032);陕西省教育厅自然科学研究专项(18JK0376);西安工业大学校长基金项目(XAGDXJJ17019)
作者简介:  王家滨,西安工业大学建筑工程学院,讲师。
引用本文:    
王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
WANG Jiabin, NIU Ditao. Nitric Acid Immersion Corrosion of Shotcrete Lining: Diffusion Law of Hydrogen Ions (H+) and Nitrite Ions (NO3-), and the Corrosion Mechanism. Materials Reports, 2019, 33(6): 991-999.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906015  或          http://www.mater-rep.com/CN/Y2019/V33/I6/991
1 Alum T. Sprayed concrete lined tunnel, New York, Taylor & Francis,2012.
2 Gary B Hemphill. Practical tunnel construction, Hoboken, Jone Wiley & Sons,2013.
3 Christopher K Y L, Lai R, Lee A Y F.Cement and Concrete Research,2005,35,788.
4 Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport,2015,28(5),1(in Chinese).
《中国公路学报》编辑部. 中国公路学报,2015,28(5),1.
5 Tomas F, Garshol K F, Tomisawa N. Tunneling and Underground Space Technology,2001,16,295
6 Wang J B, Niu D T. China Civil Engineering Jounrnal,2018,51(2),95(in Chinese).
王家滨, 牛荻涛. 土木工程学报,2018,51(2),95.
7 Wang J, Niu D, Ding S, et al.Construction and Building Materials,2015,78,203.
8 Lei H G, Wu T, Lv J G. Construction Structure,2007,37(S),8(in Chinese).
雷宏刚, 吴涛, 吕建国. 建筑结构,2007,37(S), 8.
9 Glass G K, Buenfeld N R. Cement & Concrete Research,1999,29(10),1681.
10 Yuan H, Dangla P, Chatellier P, et al. Cement & Concrete Research,2015,70(2),29.
11 Yuan H, Dangla P, Chatellier P, et al. Cement & Concrete Research,2013,53(2),267.
12 Fan Y F, Hu Z Q, Zhang Y Z, et al. Construction & Building Materials,2010,24(10),1975.
13 Ying R R, Zhu H H. Journal of Yangzhou University (Natural Science Edition),2011,14(3),70(in Chinese).
尹蓉蓉, 朱合华. 扬州大学学报(自然科学版),2011,14(3),70.
14 Thomas D. Cement and Concrete Composites,2017,83,20.
15 GB50086-2015. Technical code for engineering of ground anchorages and shotcrete support, China Planning Press,China,2015(in Chinese).
GB50086-2015. 岩土锚杆与喷射混凝土支护工程技术规范,中国计划出版社,2015.
16 Wang J B, Niu D T, Song Z P. Construction & Building Materials,2016,123,346.
17 Xu G, Yang Y H, Xu B, et al. Concrete,2017(2),1(in Chinese).
徐港, 杨亚会, 徐兵,等. 混凝土,2017(2),1.
18 Wang J B, Niu D T, Zhang Y L. Materials & Structures,2016,49(4),1469.
19 Yang N R, Yue W H. Handbook of inorganic non-metallic materials maps, Wuhan University of Technology Press, China,2000(in Chinese).
杨南如, 岳文海. 无机非金属材料图谱手册,武汉工业大学出版社,2000.
20 Huang S J, Huang K K, Feng L W, et al. Geochimica,2009,38(5),498(in Chinese).
黄思静, 黄可可, 冯文立,等. 地球化学,2009,38(5),498.
[1] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed