Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2444-2449    https://doi.org/10.11896/cldb.18060011
  高分子与聚合基复合材料 |
改性剂对TiN/PS纳米复合材料流变行为的影响
程国君1, 产爽爽1, 陈晨1, 钱家盛2, 丁国新1, 王周锋1
1 安徽理工大学材料科学与工程学院,淮南 232001;
2 安徽大学化学化工学院,合肥 230601
Effect of Modifiers on the Rheological Behavior of TiN/PS Nanocomposites
CHENG Guojun1, CHAN Shuangshuang1, CHEN Chen1, QIAN Jiasheng2, DING Guoxin1, WANG Zhoufeng1
1 School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan 232001;
2 School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601
下载:  全 文 ( PDF ) ( 2783KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别以γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MAPTMS)和大分子St/AN/MAPTMS无规共聚物为改性剂对纳米TiN进行表面预处理,再将其与聚苯乙烯(PS)复合,通过熔融挤出法制备TiN/PS纳米复合材料。研究了改性剂种类对纳米TiN增强复合材料熔融流变性能、热性能和纳米粒子分散性能的影响。实验结果发现大分子改性剂处理TiN增强PS复合材料的玻璃化转变温度、热分解温度和粒子均匀分散稳定性均高于MAPTMS,大分子处理TiN增强PS复合材料的界面黏结作用更强;受纳米TiN与PS基体界面黏结效果的影响,大分子改性剂修饰TiN增强PS体系的储能模量和复数黏度增大更为明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程国君
产爽爽
陈晨
钱家盛
丁国新
王周锋
关键词:  纳米TiN  大分子改性剂  表面改性  流变性能  界面黏结    
Abstract: TiN reinforced PS nanocomposites were prepared by melt extrusion method, in which the nano TiN was pretreated by γ-methacryloxypropyl trimethoxy silane (MAPTMS) and macromolecular random copolymer St/AN/MAPTMS, and then blended with polystyrene (PS). The effects of modifiers type on the melt rheological properties, thermal performance and dispersion of nanoparticles of nano TiN reinforced compo-sites were studied. The experimental results discovered that the glass transition temperature, thermal decomposition temperature and uniform dispersion stability of particles of nano TiN reinforced PS composites treated with macromolecular modifier were higher than those of MAPTMS. It indicated that the macromolecular modifier had strongest interfacial bonding effect for TiN reinforced PS nanocomposites. Affected by the interfacial bonding effect between nano TiN and PS, the increase of storage modulus and complex viscosity of the TiN reinforced PS system modified with macromolecular modifier were more obvious.
Key words:  nano TiN    macromolecular modifier    surface modification    rheological property    interfacial bonding
                    发布日期:  2019-06-19
ZTFLH:  TQ327.8  
基金资助: 高校优秀青年人才支持计划(gxyq2017006);安徽省博士后基金(2016B122)
通讯作者:  chengguojun0436@126.com   
作者简介:  程国君,安徽理工大学副教授,硕士生导师,2002年获得长春工业大学高分子材料与工程专业学士学位并同年就职于安徽理工大学至今,其中2010年10月至2013年12月,在安徽大学获得高分子化学与物理专业理学博士学位,研究主要围绕高分子材料改性及复合材料界面结构调控,以第一作者在国内外学术期刊上发表论文20余篇,申请国家授权发明专利1项,已培养硕士3名,本科生60余名。
引用本文:    
程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
CHENG Guojun, CHAN Shuangshuang, CHEN Chen, QIAN Jiasheng, DING Guoxin, WANG Zhoufeng. Effect of Modifiers on the Rheological Behavior of TiN/PS Nanocomposites. Materials Reports, 2019, 33(14): 2444-2449.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060011  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2444
1 Janes R A, Aldissi M, Kaner R B. Chemistry of Materials, 2003, 15, 4431.
2 Subramanian B, Muraleedharan C V, Ananthakumar R, et al. Surface & Coatings Technology, 2011, 205, 5014.
3 Sun D F, Lang J W, Yan X B, et al. Journal of Solid State Chemistry, 2011, 184, 1333.
4 Ros R A, Dragos V S. Applied Surface Science, 2012, 258, 3871.
5 Liu R, Lun N, Qi Y X, et al. Journal of Alloys and Compounds, 2011, 509, 10032.
6 Gao W, Ma X Y, Wang Z C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389, 230.
7 Kato R, Liauw C M, Allen N S, et al. Langmuir, 2008, 24, 1943.
8 Chen W W,Wu S W, Lei Y D, et al. Polymer, 2011, 52, 4387.
9 Shi T J, Wu D F. Fundamentals of polymer rheology, Chemical Industry Press, China, 2008(in Chinese).
史铁钧,吴德峰. 高分子流变学基础, 化学工业出版社,2008.
10 Zhu H J, translation. Practical rheometry, Petroleum Industry Press, China, 2009(in Chinese).
朱怀江,译. 实用流变测量学, 石油工业出版社,2009.
11 Cheng G J, Song R J, Miao J B, et al. Asian Journal of chemistry, 2013, 25(10), 5585.
12 Cheng G J, Qian J S, Miao J B, et al. Applied Surface Science, 2014, 301, 79.
13 Cheng G J, Qian J S, Xia R, et al. Micro & Nano Letters, 2014, 9(7), 441.
14 Bury K, Neugebauer D, Biela T. Reactive and Functional Polymers, 2011, 71, 616.
15 Livi S, Duchet-Rumeau J, Pham T N, et al. Journal of Colloid and Interface Science, 2010, 349, 424.
16 Zhao L. Study on structure, conductivity, and rheological behaviors of VGCF-filled polymer composites. Master's Thesis, Zhejiang University, China, 2011(in Chinese).
赵丽. VGCF填充聚合物体系的结构、导电性与流变行为研究. 硕士学位论文,浙江大学,2011.
17 Zuo M. Study on phase-separation behavior and viscoelastic relaxation of LCST-type polymer blends. Ph.D. Thesis, Zhejiang University, China, 2007(in Chinese).
左敏. LCST型高分子共混体系相分离行为与粘弹弛豫的研究. 博士学位论文,浙江大学, 2007.
18 Ghanbari A, Heuzey M C, Carreau P J, et al. Rheologica Acta, 2013, 52, 59.
19 Tiwari R R, Paul D R. Polymer, 2011, 52, 4955.
20 Yan H T, Han Q, Zhong Y, et al. Polymer Materials Science & Enginee-ring, 2011, 27(12), 68(in Chinese).
闰明涛, 韩青, 钟宇, 等. 高分子材料科学与工程, 2011, 27(12), 68.
21 Hoffmann B, Dietricha C, Thomann R, et al. Macromolecular Rapid Communications, 2000, 21, 57.
22 Lin B, Gelves G A, Haber J A, et al. Industrial & Engineering Chemistry Research, 2007, 46, 2481.
23 Amr I T, Al-Amer A, Thomas S, et al. Composites: Part B, 2011, 42, 1554.
24 Chevallier C, Becquart F, Taha M, et al. Materials Chemistry and Phy-sics, 2013, 139, 616.
25 Triebel C, Münstedt H. Polymer, 2011, 52, 1596.
26 Huang C L, Chen Y C, Hsiao T J, et al. Macromolecules, 2011, 46, 6155.
27 Bartholome C, Beyou E, Bourgeat-Lami E, et al. Polymer , 2005, 46, 9965.
28 Malwela T, Ray S S. Polymer, 2012, 53, 2705.
29 Yin X Z, Tan Y Q, Lin L, et al. Acta Polymerica Sinica, 2012(11), 1335(in Chinese).
殷先泽, 谭业强, 林 雷, 等. 高分子学报,2012(11), 1335.
30 Guan W S, Huang H X. Polymer Engineering and Science, 2013, 10, 1563.
31 Livi S, Duchet-Rumeau J, Pham T N, et al. Journal of Colloid and Interface Science, 2010, 349, 424.
32 Perez L D, Lopez J F, Orozco W H, et al. Journal of Applied Polymer Science, 2009, 111, 2229.
33 Zuo Y F, Zhang Y H, Gu J Y, et al. Materials Review B:Research Papers, 2016, 30 (10), 104(in Chinese).
左迎峰,张彦华,顾继友,等. 材料导报 :研究篇,2016, 30 (10), 104.
34 Ocando C, Tercjak A, Mondragon I. Composites Science and Technology, 2010, 70, 1106.
35 Zhang Q, Liu Q F, Zhang Y D, et al. Applied Clay Science, 2012, 65-66, 134.
36 Mallakpour S, Hatami M, et al. Progress in Organic Coatings, 2012, 74, 564.
37 Qiu U L, Mai K C, Zeng H M. Journal of Applied Polymer Science, 1999, 71, 1537 .
38 Tang K, Xin C L, Zhang C, et al. China Plastics Industry, 2015, 43(12), 83(in Chinese).
唐可,信春玲,张聪,等. 塑料工业,2015, 43(12), 83.
39 Gong J X, Liu X H, Dan W H, et al. Materials Review B:Research Papers, 2017, 31 (7), 46(in Chinese).
龚居霞,刘新华,但卫华,等. 材料导报 :研究篇,2017, 31 (7), 46.
[1] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[2] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[3] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[4] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[5] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[6] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6): 1000-1003.
[7] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[8] 吴家宇, 李丹, 康龙, 冉奋. 电化学诱导表面引发原子转移自由基聚合构筑离子型聚醚砜膜功能表面[J]. 《材料导报》期刊社, 2018, 32(4): 549-554.
[9] 胡晶, 谢国治, 顾家新, 谌静, 谭鑫, 王瑞, 邢贝贝. 多元助剂改性羰基铁粉雷达波低频吸波性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 520-524.
[10] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[11] 黄全江,南君,王三反,李欣怡,邹信,张学敏. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 《材料导报》期刊社, 2018, 32(2): 203-206.
[12] 张婷婷,董珈豪,王蒙,韦良强,秦舒浩. 分散相含量对乙烯-醋酸乙烯酯共聚物/聚丙烯原位微纤复合 材料微纤形态、结晶行为及流变和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2032-2037.
[13] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[14] 杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
[15] 张勇,王雄禹,于静,曹维成,冯鹏发,焦生杰. 高温应用钼及钼合金表面改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 83-87.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed