Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3368-3374    https://doi.org/10.11896/j.issn.1005-023X.2018.19.011
  无机非金属及其复合材料 |
基于声发射技术的热障涂层损伤行为
李雪换1,底月兰2,王海斗2,李国禄1,董丽虹2
1 河北工业大学材料科学与工程学院,天津 300130;
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Failure Behavior of Thermal Barrier Coatings Based on Acoustic Emission Technique
LI Xuehuan1, DI Yuelan2, WANG Haidou2, LI Guolu1, DONG Lihong2
1 School of Materials Science and Engineering,Hebei University of Technology, Tianjin 300130;
2 National Key Laboratory for Remanufacturing, Academy of Army Armored Forces, Beijing 100072
下载:  全 文 ( PDF ) ( 1258KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热障涂层以优异的隔热、耐磨和耐蚀性而被广泛应用于航空涡轮发动机中。由于热障涂层体系内部结构复杂,服役环境苛刻,导致其失效不可预测。热障涂层系统内的表面开裂和界面分层是限制热障涂层长时间使用的瓶颈问题,且热障涂层的过早剥落失效会导致合金基体暴露在高温燃气中,这可能引起灾难性的后果。针对涂层的裂纹扩展行为,最重要也最直接的研究方法就是对热障涂层的整个失效过程进行实时无损检测,为寿命预测提供最直接的证据。
声发射技术是一种实时动态的无损检测方法,可直接检测热障涂层失效过程中的裂纹扩展行为,因此在热障涂层失效检测领域得到了广泛的应用。然而,造成热障涂层损伤失效的因素较多,如失效机理复杂、失效形式多样,以及声发射信号本身的随机性和不可逆性,使得利用声发射技术检测热障涂层失效整个过程的研究还不够全面。
目前,已通过声发射技术的参数分析和波形分析实现了对热障涂层损伤失效的定性、定量和定位分析,并对涂层寿命进行了预测。参数分析是以多个简化的波形特征参数来表示声发射信号的特征,即对一些特征量进行统计的过程,如能量、频率、幅度等。采用声发射特征参数法可定量评估热障涂层的损伤程度并对涂层的寿命进行预测。目前人们从连续损伤累计、某一特定参量变化等多个角度预测热障涂层的寿命,但是各种寿命预测模型主要是根据实验结果的经验或半经验公式,随着热障涂层的发展以及对热障涂层失效机理认识的不断加深,寿命预测模型也在不断发展与完善。波形分析是通过对声发射信号的时域波形或频谱特征分析来获取缺陷信息的一种信号处理方法。从理论上讲,波形分析应当能给出任何所需的信息,因而波形也是表达声发射源特征最精确的方法,目前主要通过小波变换把声发射波形信号从时域变换到频域,进而识别其损伤模式并实现声发射源的定位。
本文对声发射技术进行了简要的介绍,总结了声发射技术参数分析和波形分析在热障涂层损伤模式识别、损伤位置的定位、损伤程度的定量评估和剩余寿命预测方面的研究进展,指出了当前研究中存在的问题并对其下一步的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪换
底月兰
王海斗
李国禄
董丽虹
关键词:  热障涂层  损伤行为  声发射  参数分析  波形分析    
Abstract: Thermal barrier coatings (TBCs) have been widely used in gas turbines and aero engines,thanks to their excellent thermal insulation, wear and corrosion resistance. The failure of the thermal barrier coatings is usually unpredictable due to the complex internal structure of the TBC systems and the harsh service environment. Surface cracking and interface delaminating or spalling in TBC are bottlenecks which block the long-term service of TBCs, and premature spalling of TBCs causes the substrate to be exposed to gas with high temperature, which may lead to disastrous consequences. The most important and direct research method for the crack growth behavior of TBCs is to carry out the real-time nondestructive testing of the whole failure process under simulated actual working environment, which can provide the direct reference for the prediction of the life of the thermal barrier coating.
Acoustic emission(AE) is a real-time nondestructive testing technique to track the failure process of TBCs, which can conti-nuously detect slight deformation and failure behavior in the interior of materials. Now, it has been widely used in the field of failure detection of TBCs. Nevertheless, there are many factors that lead to the failure of TBCs, including the complex failure mechanism, the variety of failure forms, and the randomness and irreversibility of acoustic emission signal itself. Therefore, the research on the whole process of detecting failure of TBCs by acoustic emission technique is not comprehensive enough.
At present, the qualitative, quantitative and location analysis of the failure of TBCs has been realized through the parameter analysis and waveform analysis of acoustic emission technique, and the lifetime of TBCs can be predicted. Parameter analysis is a process in which several simplified waveform characteristic parameters are used to represent the characteristics of acoustic emission signals, namely the process of counting some feature parameters like energy, frequency and amplitude etc. The quantitative evaluation of the damage degree and the lifetime prediction of TBCs can be realized by parameters analysis of acoustic emission technique. Currently, the life expectancy of the TBCs is predicted from the perspectives of the continuous damage accumulation and the variation of a certain parameter. However, various life prediction models mainly based on empirical or semi-empirical formula from experimental results. With the development of TBCs and the deepening understanding of the failure mechanism of TBCs, the life prediction model is also constantly developing and improving. Waveform analysis is a signal processing method to obtain defect information by analyzing the time domain waveform or spectrum characteristic of acoustic emission signal. Theoretically, waveform analysis can give any needed information, therefore waveforms are the most accurate way to express the characteristics of acoustic emission sources. At present, through the transformation of acoustic emission waveform signal from time domain to frequency domain by wavelet transform, the damage mode identification and the acoustic emission source localization can be realized.
This review gives a brief introduction of AE technique, summarizes the progress of parameters analysis and waveform analysis of acoustic emission technique on the identification of damage mode, location of damage position, quantitative assessment of damage degree and prediction of residual life of TBCs. The problems in current research are also outlined and the future development is proposed.
Key words:  thermal barrier coatings    failure behavior    acoustic emission    parameter analysis    waveform analysis
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TG115.28  
基金资助: 国家自然科学基金(51535011;51775553);973计划(61328304)
作者简介:  李雪换:女,1991年生,硕士研究生,研究方向为再制造表面工程 E-mail:xuehuan1101@163.com ;王海斗:通信作者,男,1969年生,博士,研究员,研究方向为再制造表面工程 E-mail:wanghaidou@aliyun.com
引用本文:    
李雪换, 底月兰, 王海斗, 李国禄, 董丽虹. 基于声发射技术的热障涂层损伤行为[J]. 材料导报, 2018, 32(19): 3368-3374.
LI Xuehuan, DI Yuelan, WANG Haidou, LI Guolu, DONG Lihong. Failure Behavior of Thermal Barrier Coatings Based on Acoustic Emission Technique. Materials Reports, 2018, 32(19): 3368-3374.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.011  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3368
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280.
2 Yang L, Zhou Y C, Lu C. Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: An acoustic emission method[J].Acta Materialia,2011,59(17):6519.
3 B ker M, Seiler P. A guide to finite element simulations of thermal barrier coatings[J].Journal of Thermal Spray Technology,2017,26(6):1146.
4 Wang L, Ni J X, Shao F, et al. Failure behavior of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings under three-point bending test via acoustic emission technique[J].Journal of Thermal Spray Technology,2017,26(1-2):116.
5 Yang Li. Nondestructive evaluation of oxidation, damage and fracture of thermal barrier coatings[D].Xiangtan:Xiangtan University,2007(in Chinese).
杨丽.热障涂层氧化、损伤与断裂的无损评价研究[D].湘潭:湘潭大学,2007.
6 Liu Guohua. The research on the key technologies in acoustic emission signal processing[D].Hangzhou:Zhejiang University,2008(in Chinese).
刘国华.声发射信号处理关键技术研究[D].杭州:浙江大学,2008.
7 Ivanov V I. Acoustic emission: Some problems, tasks and solutions[J].NDT International,1984,17(6):323.
8 李孟源,尚振东,蔡海潮.声发射检测及信号处理[M].北京:科学出版社,2010.
9 李光海,刘时风.声发射信号分析技术及进展[C]∥第十届全国声发射会议论文集.大庆,2004:52.
10 Green A T, Lockman C S, Steele R K. Acoustic verification of structural integrity of Polaris chambers[J].Mordern Plastics,1964,41(11):137.
11 Prine D W. Inspection of nuclear reactor welding by acoustic emission[J].Welding Design and Fabrication,1977,50(1):74.
12 Othman O K J. Characteristics of acoustic emission sensors employed for tool condition monitoring[C]∥Vii Workshop on Supervision and Diagnostics of Machining Systems.Karpacz-Poland,1996.
13 Jemielniak K. Some aspects of acoustic emission signal pre-proces-sing[J].Journal of Materials Processing Technology,2001,109(3):242.
14 金属压力容器声发射检测及结果评价方法.GB/T18182-2000[S].北京:中国标准出版社出版,2000.
15 Suzuki H, Kinjo T, Takemoto M, et al. Fracture-mode determination of glass-fiber composites by various AE processing[J].Progress in Acoustic Emission,1996,8:47.
16 Gang Q, Alan B, Javad H, et al. Discrete wavelet decomposition of acoustic emission signals from carbon-fiber-reinforced composites[J].Composites Science and Technology,1997,57:389.
17 Cui Y,Li X L,Peng H X, et al. Interface characterization of noncontinuous reinforced metal matrix composites based on acoustic emission wavelet analysis[J].Chinese Science Bulletin,1998,43(6):656(in Chinese).
崔岩,李小俚,彭华新,等.基于声发射小波分析的非连续增强金属基复合材料界面表征[J].科学通报,1998,43(6):656.
18 Ma X Q, Takemoto M. Quantitative acoustic emission analysis of plasma sprayed thermal barrier coatings subjected to thermal shock tests[J].Materials Science and Engineering:A,2001,308(1):101.
19 Mao W G,Dai C Y,Zhou Y C.Prediction of residual stress in the system during preparation of thermal barrier coatings[J].Natural Science Journal of Xiangtan University,2005,27(4):46(in Chinese).
毛卫国,戴翠英,周益春.在制备热障涂层过程中系统内残余应力场预测[J].湘潭大学自然科学学报,2005,27(4):46.
20 Fu L, Khor K A, Ng H W, et al. Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings[J].Surface and Coatings Technology,2000,130(2):233.
21 Ma X Q, Cho S, Takemoto M. Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests[J].Surface and Coatings Technology,2001,139(1):55.
22 Kucuk A, Berndt C C, Senturk U, et al. Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coa-tings. Ⅱ: Acoustic emission response[J].Materials Science and Engineering: A,2000,284(1):41.
23 Zhou Y C, Hashida T. Thermal fatigue failure induced by delamination in thermal barrier coating[J].International Journal of Fatigue,2002,24(2):407.
24 Yang L, Zhou Y C, Mao W G, et al. Acoustic emission evaluation of the fracture behavior of APS-TBCs subjecting to bond coating oxidation[J].Surface and Interface Analysis,2007,39(9):761.
25 Ferrer M K, Brown S D. Delayed failure of plasma-sprayed Al2O3 applied to metallic substrates[J].Journal of the American Ceramic Society,1981,64(12):737.
26 Bascom W D, Bitner J L. A fracture approach to thick film adhesion measurements[J].Journal of Materials Science,1977,12(7):1401.
27 Seong S H, Hur S, Kim J S, et al. Development of diagnosis algorithm for the check valve with spectral estimations and neural network models using acoustic signals[J].Annals of Nuclear Energy,2005,32(5):479.
28 Patapy C, Proust A, Marlot D, et al. Characterization by acoustic emission pattern recognition of microstructure evolution in a fused-cast refractory during high temperature cycling[J].Journal of the European Ceramic Society,2010,30(15):3093.
29 Pearson T C, Cetin A E, Tewfik A H, et al. Feasibility of impact-acoustic emissions for detection of damaged wheat kernels[J].Digital Signal Processing,2007,17(3):617.
30 Chung K H, Oh J K, Moon J T, et al. Particle monitoring method using acoustic emission signal for analysis of slider/disk/particle interaction[J].Tribology International,2004,37(10):849.
31 Yu Y H, Choi J H, Kweon J H, et al. A study on the failure detection of composite materials using an acoustic emission[J].Composite Structures,2006,75(1):163.
32 Lee J B, Jung J P, Lee M H, et al. Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs[J].Thin Solid Films,2004,447:610.
33 Zhong Zhichun. Quantitative failure assessment for surface cracking and interface delamination of thermal barrier coatings by acoustic emission[D].Xiangtan:Xiangtan University,2013(in Chinese).
钟志春.热障涂层表面开裂与界面剥离失效的声发射定量评价[D].湘潭:湘潭大学,2013.
34 Li L P,Zou X Y,Tang Y Q.Application of wavelet transform to detecting characteristic parameters of acoustic emission signal[J].Journal of Vibration and Shock,2001,20(2):67(in Chinese).
李录平,邹新元,唐月清.小波变换在声发射信号特征参数检测中的应用[J].振动与冲击,2001,20(2):67.
35 Pasti L, Walczak B, Massart D L, et al. Optimization of signal denoising in discrete wavelet transform[J].Chemometrics and Intelligent Laboratory Systems,1999,48(1):21.
36 Velayudham A, Krishnamurthy R, Soundarapandian T. Acoustic emission based drill condition monitoring during drilling of glass/phenolic polymeric composite using wavelet packet transform[J].Materials Science and Engineering:A,2005,412(1):141.
37 Lee M R, Lee J H, Kwon Y K. A study of the microscopic deformation behavior of Nb 3 Sn composite superconducting tape using the acoustic emission technique[J].Composites Science and Technology,2004,64(10):1513.
38 Yang L, Zhou Y C, Mao W G, et al. Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings[J].Applied Physics Letters,2008,93(23):299.
39 Yang L, Zhong Z C, Zhou Y C, et al. Acoustic emission assessment of interface cracking in thermal barrier coatings[J].Acta Mechanica Solida Sinica,2016,32(2):342.
40 Zhu W, Yang L, Guo J W, et al. Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model[J].International Journal of Plasticity,2015,64(7):76.
41 Zhao Jingrong.Acoustic emission signal processing system and source recognition methods[D].Changchun:Jilin University,2010(in Chinese).
赵静荣.声发射信号处理系统与源识别方法的研究[D].长春:吉林大学,2010.
42 Shen G T,Geng R S,Liu S F. Acoustic emission source positioning technology[J].Nondestructive Testing,2002,24(3):114(in Chinese).
沈功田,耿荣生,刘时风.声发射源定位技术[J].无损检测,2002,24(3):114.
43 袁振明,马羽宽,何泽云.声发射技术及其应用[M].北京:机械工业出版社,1985.
44 Li G H. Research on acoustic emission source recognition technology[D].Wuhan:South China University of Technology,2002(in Chinese).
李光海.声发射源识别技术的研究[D].武汉:华南理工大学,2002.
45 Yang L.Zhou Y C.Thermal barrier coating location method based on wavelet transform for acoustic emission sources[J].Natural Science Journal of Xiangtan University,2009,31(1):38 (in Chinese).
杨丽,周益春.热障涂层基于小波变换的声发射源定位方法[J].湘潭大学自然科学学报,2009,31(1):38.
46 Renusch D, Schütze M. Measuring and modeling the TBC damage kinetics by using acoustic emission analysis[J].Surface and Coatings Technology,2007,202(4):740.
47 McGuigan A P, Briggs G A D, Burlakov V M, et al. An elastic-plastic shear lag model for fracture of layered coatings[J].Thin Solid Films,2003,424(2):219.
48 Choi S R, Zhu D, Miller R A. Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at am-bient and elevated temperatures[J].Engineering Fracture Mechanics,2005,72(13):2144.
49 Zhou Y C, Liu Q X, Yang L, et al. Failure mechanism and life prediction of thermal barrier coatings[J].Chinese Journal of Solid Mechanics,2010,31(5):504(in Chinese).
周益春,刘奇星,杨丽,等.热障涂层的破坏机理与寿命预测[J].固体力学学报,2010,31(5):504.
50 Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(5):505.
51 Chen X, Hutchinson J W, He M Y, et al. On the propagation and coalescence of delamination cracks in compressed coatings: With application to thermal barrier systems[J].Acta Materialia,2003,51(7):2017.
52 Busso E P, Wright L, Evans H E, et al. A physics-based life prediction methodology for thermal barrier coating systems[J].Acta Materialia,2007,55(5):1491.
53 Courcier C, Maurel V, Rémy L, et al. Interfacial damage based life model for EB-PVD thermal barrier coating[J].Surface & Coatings Technology,2011,205(13-14):3763.
54 Sornette D, Sammis C G. Complex critical exponents from renormalization group theory of earthquakes: Implications for earthquake predictions[J].Journal De Physique I,1995,5(5):607.
55 Renusch D, Echsler H, Schütze M. The role that interacting failure mechanisms have on the lifetime of APS-TBC under oxidizing conditions[C]∥Materials Science Forum. Frankfurt, Germany,2004:729.
56 Busso E P, Lin J, Sakurai S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part Ⅰ: Model formulation[J].Acta Materialia,2001,49(9):1515.
57 Busso E P, Lin J, Sakurai S. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part Ⅱ: Life prediction model[J].Acta Materialia,2001,49(9):1529.
[1] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[2] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[3] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[4] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[5] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[6] 韩志勇, 史文新, 王者, 丁坤英, 程涛涛. HCPEB表面改性对镀铝CoCrAlY涂层显微组织及氧化性能的影响[J]. 材料导报, 2019, 33(14): 2392-2396.
[7] 高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
[8] 黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1122-1128.
[9] 韩志勇, 丘珍珍, 史文新. 强流脉冲电子束粘结层表面改性对热障涂层热震及残余应力的影响[J]. 材料导报, 2018, 32(24): 4303-4308.
[10] 刘鑫, 杨鼎宜, 刘廉, 吕锦飞. 热-力耦合作用下PVA纤维混凝土力学性能及其声发射响应[J]. 材料导报, 2018, 32(18): 3135-3141.
[11] 赵钦, 马国政, 王海斗, 李国禄, 陈书赢, 刘明. 等离子喷涂用Y2O3稳定ZrO2空心球形粉末制备技术及涂层性能的研究现状*[J]. 《材料导报》期刊社, 2017, 31(15): 60-67.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed