Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 100-104    https://doi.org/10.11896/j.issn.1005-023X.2017.014.021
  材料研究 |
热输入对脉冲等离子弧增材制造Inconel 718合金组织与性能的影响*
王凯博, 吕耀辉, 刘玉欣, 孙哲, 徐滨士
装甲兵工程学院,装备再制造技术国防科技重点实验室, 北京 100072;
Influence of Heat Input on Microstructure and Mechanical Property of Pulsed Plasma Arc Additive Manufactured Inconel 718 Superalloy
WANG Kaibo, LU Yaohui, LIU Yuxin, SUN Zhe, XU Binshi
National Defense Key Laboratory for Remanufacturing Technology, Academy of Armored Force Engineering, Beijing 100072;
下载:  全 文 ( PDF ) ( 1730KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于脉冲等离子弧的增材制造技术在Q235基板上加工了Inconel 718合金试样,通过改变功率和焊接速度研究了不同热输入对试样组织与性能演变规律的影响。借助光学显微镜、扫描电镜、能谱分析、维氏硬度仪等手段对试样晶粒形态、枝晶间距、元素偏析、析出相成分及分布、显微硬度等进行表征,结果表明随着热输入从1.08×106 J/m 增大至1.76×106 J/m,晶粒形态从细长的柱状枝晶逐渐转变为粗大的胞状枝晶,枝晶间距从6.34 μm增大至9.09 μm,Nb、Mo等元素在枝晶间偏析加剧,Laves相由颗粒状、块状逐渐变为长链状,显微硬度不断下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王凯博
吕耀辉
刘玉欣
孙哲
徐滨士
关键词:  热输入  增材制造  脉冲等离子弧  组织    
Abstract: The effect of heat input on microstructure and mechanical property of pulsed plasma arc additive manufactured Inconel 718 superalloy samples were investigated. Five different heat inputs ranging from 1.08×106 J/m to 1.76×106 J/m were adop-ted by changing power and welding speed. The microstructure morphology, dendritic spacing, elemental segregation and interdendritic Laves phase were also studied by using optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that as the heat inputs increase, the microstructure morphology is changed from columnar dendrites to cellular dendrites, and dendritic spacing also increases from 6.34 μm to 9.09 μm. Consequently, elemental segregation of Nb and Mo are promoted so that the morphology of interdendritic Laves phase is changed from particles to chains, which leads to the decrease of microhardness.
Key words:  heat input    additive manufacturing    pulsed plasma arc    microstructure
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG456.2  
基金资助: *国家重点研发计划项目(2016YFB1100201)
作者简介:  王凯博:男,1991年生,硕士研究生,研究方向为镍基高温合金的等离子增材制造 E-mail:wkb03632@alumni.sjtu.edu.cn 吕耀辉:通讯作者,男,1970年生,副研究员,博士研究生导师,研究方向为等离子焊接、等离子增材制造 E-mail:yhlv127@163.com
引用本文:    
王凯博, 吕耀辉, 刘玉欣, 孙哲, 徐滨士. 热输入对脉冲等离子弧增材制造Inconel 718合金组织与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 100-104.
WANG Kaibo, LU Yaohui, LIU Yuxin, SUN Zhe, XU Binshi. Influence of Heat Input on Microstructure and Mechanical Property of Pulsed Plasma Arc Additive Manufactured Inconel 718 Superalloy. Materials Reports, 2017, 31(14): 100-104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.021  或          http://www.mater-rep.com/CN/Y2017/V31/I14/100
1 Wang X K, Xing L, Xu W P, et al. Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J]. J Mater Eng,2015,43(5):8(in Chinese).
王忻凯, 邢丽, 徐卫平, 等. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程,2015,43(5):8.
2 Thjis L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Mater,2010,58(9):3303.
3 Ströβner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM)[J]. Adv Eng Mater,2015,17(8):1099.
4 Ram G D J, Reddy A V, Rao K P, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds[J]. J Mater Process Technol,2005,167(1):73.
5 Richards N L, Chaturvedi M C. Effect of minor elements on wel-dability of nickel base superalloys[J]. Int Mater Rev,2000,45(3):109.
6 Jawwad A K A, Strangwood M, Davis C L. Microstructural modification in full penetration and partial penetration electron beam welds in INCONEL-718 (IN-718) and its effect on fatigue crack initiation[J]. Metall Mater Trans A,2005,36(5):1237.
7 Liu F, Lin X, Leng H, et al. Microstructural changes in a laser so-lid forming Inconel 718 superalloy thin wall in the deposition direction[J]. Opt Laser Technol,2013,45(2):330.
8 Chen Y, Zhang K, Huang J, et al. Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718[J]. Mater Des,2016,90:586.
9 Trosch T, Ströβner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to for-ging and casting[J]. Mater Lett,2016,164:428.
10 Hinojos A, Mireles J, Reichardt A, et al. Joining of inconel 718 and 316 stainless steel using electron beam melting additive manufactu-ring technology[J]. Mater Des,2016,94:17.
11 Xu F J, Lv Y H, Xu B S, et al. Study on process of rapid prototyping based on pulsed plasma arc welding[J]. Mater Sci Technol,2012,20(3):89(in Chinese).
徐富家, 吕耀辉, 徐滨士,等. 基于脉冲等离子焊接快速成形工艺研究[J]. 材料科学与工艺,2012,20(3):89.
12 Kurz W, Fisher D J. Fundamentals of solidification[M]. Switzerland: Trans Tech Publications,1986.
13 Fu H, Geng X. High rate directional solidification and its application in single crystal superalloys[J]. Sci Technol Adv Mater,2001,2(1):197.
14 Manikandan S G K, Sivakumar D, Rao K P, et al. Microstructural characterization of liquid nitrogen cooled alloy 718 fusion zone[J]. J Mater Process Technol,2014,214(12):3141.
15 Mathiesen R H, Arnberg L, Bleuet P, et al. Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-ray video microscopy[J]. Metall Mater Trans A,2006,37(8):2515.
16 Wang H M, Zhang J H, Tang Y J, et al. Rapidly solidified MC carbide morphologies of a laser-glazed single-crystal nickel-base superalloy[J]. Mater Sci Eng A,1992,156(1):109.
17 Bouse G K, Mihalisin J R. 4-Metallurgy of investment cast superalloy components[M]∥Tien J K,Caulfield T.Superall Supercompos Superceram.San Diego:Academic Press,1989:99.
18 OdabaŞi A, Ünlü N, Göller G, et al. A study on laser beam welding (LBW) technique: Effect of heat input on the microstructural evolution of superalloy inconel 718[J]. Metall Mater Trans A,2010,41(9):2357.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[6] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[7] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[8] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[9] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[10] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[11] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[12] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[13] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[14] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[15] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed