Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 384-390    https://doi.org/10.11896/j.issn.1005-023X.2018.03.007
     材料综述 |
基于纳米材料的气凝胶制备及应用
管庆顺1,李建1,宋如愿1,徐朝阳2,吴伟兵1,景宜1,戴红旗1,房桂干3
1 南京林业大学,江苏省制浆造纸科学与技术重点实验室,江苏省林业资源高效加工利用协同创新中心,南京 210037
2 南京林业大学材料科学与工程学院,南京 210037
3 中国林业科学研究院林产化学工业研究所,南京 210042
A Survey on Preparation and Application of Aerogels Based on Nanomaterials
Qingshun GUAN1,Jian LI1,Ruyuan SONG1,Zhaoyang XU2,Weibing WU1,Yi JING1,Hongqi DAI1,Guigan FANG3
1 Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037
2 College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037
3 Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042
下载:  全 文 ( PDF ) ( 1811KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

气凝胶是一种三维多孔材料,具有孔隙率高、比表面积大、密度低等特性。以纳米材料构筑气凝胶可进一步调控孔隙结构、改善机械强度,同时还能赋予气凝胶高导电性、低热导率、高吸附性和隔音吸声等特性,在储能、保温隔热、吸附材料等领域有重要的应用。重点对近年以纳米颗粒、纳米纤维素、碳纳米纤维、碳纳米管、石墨烯等不同形态纳米材料构筑的气凝胶的制备、结构、性能和应用进行了综述,同时展望了气凝胶的发展前景与方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
管庆顺
李建
宋如愿
徐朝阳
吴伟兵
景宜
戴红旗
房桂干
关键词:  气凝胶  纳米材料  比表面积  吸附  导电性    
Abstract: 

Aerogels possess the characteristics of high porosity, large specific surface area and low density because of their consecutive 3D network and porous structure. Fabricating aerogels with nanomaterials can improve the porous structure and mechanical strength, and further endue aerogels with special features including high conductivity, low heat conductivity, high adsorption capacity, good sound insulation, etc. Therefore, aerogels based on nanomaterials have significant applications in the fields of energy storage, thermal insulation and materials adsorption. This review summarizes the fabrication, structure, properties and applications of aerogels based on nanomaterials with various morphology including nanoparticles, nanocelluloses, carbon nanofibers, carbon nanotubes and graphene in recent years. Finally, the future development of aerogels based on nanomaterials is pointed out.

Key words:  aerogel    nanomaterial    specific surface area    adsorption    conductivity
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB34  
基金资助: 国家自然科学基金(31370583);国家自然科学基金(31470599);国家自然科学基金(31770607);国家重点研发计划项目子课题(2017YFD0601005);2017年江苏省自然科学基金面上项目(BK20171450)
作者简介:  管庆顺:男,1993年生,硕士研究生,主要从事纳米纤维素功能材料方面的研究 吴伟兵:通信作者,男,副教授,主要从事纤维素功能材料方面的研究 E-mail: wbwu@njfu.edu.cn
引用本文:    
管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials. Materials Reports, 2018, 32(3): 384-390.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.007  或          https://www.mater-rep.com/CN/Y2018/V32/I3/384
  
  
1 Lai F, Huang Y, Zuo L , et al. Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016,4(41):15861.
2 De Marco M, Markoulidis F, Menzel R , et al. Cross-linked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry[J]. Journal of Materials Chemistry A, 2016,4(15):5385.
3 Zhang F, Wu W, Zhang X , et al. Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release[J]. Cellulose, 2016,23(1):415.
4 Freytag A, Sánchez-Paradinas S, Naskar S , et al. Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions[J]. Angewandte Chemie International Edition, 2016,55(3):1200.
5 Dong W, Rhine W, Caggiano G, et al. Characterization of bismuth telluride aerogels for thermoelectric applications [C]∥Materials Research Society Symposium Proceedings.Boston,MA,United States, 2010.
6 Zheng H, Shan H, Bai Y , et al. Assembly of silica aerogels within silica nanofibers: Towards a super-insulating flexible hybrid aerogel membrane[J]. RSC Advances, 2015,5(111):91813.
7 Gleiter H . Nanostructured materials: State of the art and perspectives[J]. Nanostructured Materials, 1995,6(1-4):3.
8 Korhonen J T, Kettunen M , Ras R H A, et al. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents[J]. ACS Applied Materials & Interfaces, 2011,3(6):1813.
9 He Y, Bai Y, Yang X , et al. Holey graphene/polypyrrole nanoparticle hybrid aerogels with three-dimensional hierarchical porous structure for high performance supercapacitor[J]. Journal of Power Sources, 2016,317:10.
10 Liu X, Li J, Sun J , et al. 3D Fe3O4 nanoparticle/graphene aerogel for NO2 sensing at room temperature[J]. RSC Advances, 2015,5(90):73699.
11 Arachchige I U, Brock S L . Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks[J]. Journal of the American Che-mical Society, 2006,128(24):7964.
12 Mohanan J L, Brock S L . A new addition to the aerogel community: Unsupported CdS aerogels with tunable optical properties[J]. Journal of Non-crystalline Solids, 2004,350:1.
13 Arachchige I U, Brock S L . Highly luminescent quantum-dot monoliths[J]. Journal of the American Chemical Society, 2007,129(7):1840.
14 Hendel T, Lesnyak V, Kühn L , et al. Mixed aerogels from Au and CdTe nanoparticles[J]. Advanced Functional Materials, 2013,23(15):1903.
15 Heiligtag F J, Kr?nzlin N, Süess M J , et al. Anatase-silica compo-site aerogels: A nanoparticle-based approach[J]. Journal of Sol-Gel Science and Technology, 2014,70(2):300.
16 Rechberger F, Ilari G, Niederberger M . Assembly of antimony doped tin oxide nanocrystals into conducting macroscopic aerogel monoliths[J]. Chemical Communications, 2014,50(86):13138.
17 Rechberger F, St?dler R, Tervoort E , et al. Strategies to improve the electrical conductivity of nanoparticle-based antimony-doped tin oxide aerogels[J]. Journal of Sol-Gel Science and Technology, 2016,80(3):660.
18 Bigall N C, Herrmann A K, Vogel M , et al. Hydrogels and aerogels from noble metal nanoparticles[J]. Angewandte Chemie Internatio-nal Edition, 2009,48(51):9731.
19 Bigall N C, Eychmüller A . Synjournal of noble metal nanoparticles and their non-ordered superstructures[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010,368(1915):1385.
20 Gill S K, Brown P , Hope-Weeks L J. Gold modified cadmium sulfide aerogels[J]. Journal of Sol-Gel Science and Technology, 2011,57(1):68.
21 Gill, Simerjeet K , Louisa J Hope-Weeks. Monolithic aerogels of silver modified cadmium sulfide colloids[J]. Chemical Communications, 2009,29:4384.
22 Ganguly S, Brock S L . Toward nanostructured thermoelectrics: Synjournal and characterization of lead telluride gels and aerogels[J]. Journal of Materials Chemistry, 2011,21(24):8800.
23 Kalebaila K K, Georgiev D G, Brock S L . Synjournal and characte-rization of germanium sulfide aerogels[J]. Journal of Non-crystalline Solids, 2006,352(3):232.
24 Abitbol T, Rivkin A, Cao Y , et al. Nanocellulose,a tiny fiber with huge applications[J]. Current Opinion in Biotechnology, 2016,39:76.
25 Mishra S P, Manent A S, Chabot B , et al. Production of nanocellulose from native cellulose-various options utilizing ultrasound[J]. BioResources, 2011,7(1):0422.
26 Qin Z Y, Tong G , Chin Y C F, et al. Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation[J]. BioResources, 2011,6(2):1136.
27 Chen W, Li Q, Wang Y , et al. Comparative study of aerogels obtained from differently prepared nanocellulose fibers[J]. ChemSusChem, 2014,7(1):154.
28 Jiang F, Hsieh Y L . Amphiphilic superabsorbent cellulose nanofibril aerogels[J]. Journal of Materials Chemistry A, 2014,2(18):6337.
29 Jiang F, Hsieh Y L . Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing[J]. Journal of Materials Chemistry A, 2014,2(2):350.
30 Xiao S, Gao R, Lu Y , et al. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles[J]. Carbohydrate Polymers, 2015,119:202.
31 Cervin N T, Aulin C, Larsson P T , et al. Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids[J]. Cellulose, 2012,19(2):401.
32 Zhang Z, Sèbe G, Rentsch D , et al. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water[J]. Chemistry of Materials, 2014,26(8):2659.
33 Zhang F, Wu W, Sharma S , et al. Synjournal of cyclodextrin-functionalized cellulose nanofibril aerogel as a highly effective adsorbent for phenol pollutant removal[J]. BioResources, 2015,10(4):7555.
34 Toivonen M S, Kaskela A, Rojas O J , et al. Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices[J]. Advanced Functional Materials, 2015,25(42):6618.
35 Yang H , Sheikhi A, van de Ven T G M. Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal[J]. Langmuir, 2016,32(45):11771.
36 Leitch M E, Li C, Ikkala O , et al. Bacterial nanocellulose aerogel membranes:Novel high-porosity materials for membrane distillation[J]. Environmental Science & Technology Letters, 2016,3(3):85.
37 Sai H, Fu R, Xing L , et al. Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation[J]. ACS Applied Materials & Interfaces, 2015,7(13):7373.
38 Pircher N, Veigel S, Aigner N , et al. Reinforcement of bacterial cellulose aerogels with biocompatible polymers[J]. Carbohydrate Polymers, 2014,111:505.
39 Tran P A, Zhang L, Webster T J . Carbon nanofibers and carbon nanotubes in regenerative medicine[J]. Advanced Drug Delivery Reviews, 2009,61(12):1097.
40 Liang H W, Guan Q F, Chen L F , et al. Macroscopic-scale template synjournal of robust carbonaceous nanofiber hydrogels and aerogels and their applications[J]. Angewandte Chemie International Edition, 2012,51(21):5101.
41 Song L T, Wu Z Y, Liang H W , et al. Macroscopic-scale synjournal of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates[J]. Nano Energy, 2016,19:117.
42 Meng F, Li L, Wu Z , et al. Facile preparation of N-doped carbon nanofiber aerogels from bacterial cellulose as an efficient oxygen reduction reaction electrocatalyst[J]. Chinese Journal of Catalysis, 2014,35(6):877.
43 Wu Z Y, Li C, Liang H W , et al. Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions[J]. Scientific Reports, 2014,4(2):4079.
44 Wu Z Y, Li C, Liang H W , et al. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte Chemie, 2013,125(10):2997.
45 Hayase G, Nonomura K, Hasegawa G , et al. Ultralow-density,transparent,superamphiphobic boehmite nanofiber aerogels and their alumina derivatives[J]. Chemistry of Materials, 2014,27(1):3.
46 Boday D J, Muriithi B, Stover R J , et al. Polyaniline nanofiber-silica composite aerogels[J]. Journal of Non-Crystalline Solids, 2012,358(12):1575.
47 Thostenson E T, Ren Z, Chou T W . Advances in the science and technology of carbon nanotubes and their composites: A review[J]. Composites Science and Technology, 2001,61(13):1899.
48 Araby S, Qiu A, Wang R , et al. Aerogels based on carbon nanomaterials[J]. Journal of Materials Science, 2016,51(20):9157.
49 Mikhalchan A, Fan Z, Tran T Q , et al. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method[J]. Carbon, 2016,102:409.
50 Shen Y, Du A, Wu X L , et al. Low-cost carbon nanotube aerogels with varying and controllable density[J]. Journal of Sol-Gel Science and Technology, 2016,79(1):76.
51 Li Y, Zhao M, Chen J , et al. Flexible chitosan/carbon nanotubes aerogel, a robust matrix for in-situ growth and non-enzymatic biosensing applications[J]. Sensors and Actuators B:Chemical, 2016,232:750.
52 Gui X, Wei J, Wang K , et al. Carbon nanotube sponges[J]. Advanced Materials, 2010,22(5):617.
53 Van Aken K L, Pérez C R, Oh Y , et al. High rate capacitive performance of single-walled carbón nanotube aerogels[J]. Nano Energy, 2015,15:662.
54 Geim A K, Novoselov K S . The rise of graphene[J]. Nature mate-rials, 2007,6(3):183.
55 Geim A K . Graphene: Status and prospects[J]. Science, 2009,324(5934):1530.
56 Liu T, Huang M, Li X , et al. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J]. Carbon, 2016,100:456.
57 Yang S L, Zhang L, Yang Q Y , et al. Graphene aerogel prepared by thermal evaporation of graphene oxide suspension containing sodium bicarbonate[J]. Journal of Material Chemistry A, 2015,3(15):7950.
58 Chen Z, Ren W, Gao L , et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011,10(6):424.
59 Alizadeh T, Ahmadian F . Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia[J]. Analytica Chimica Acta, 2015,897:87.
60 Xu Y, Lin Z, Huang X , et al. Functionalized graphene hydrogel-based high-performance supercapacitors[J]. Advanced Materials, 2013,25(40):5779.
61 Dai J, Huang T, Tian S , et al. High structure stability and outstanding adsorption performance of graphene oxide aerogel supported by polyvinyl alcohol for waste water treatment[J]. Materials & Design, 2016,107:187.
62 Xu X, Yan S, Wang B , et al. Graphene aerogel/platinum nanoparticle nanocomposites for direct electrochemistry of cytochrome and hydrogen peroxide sensing[J]. Journal of Nanoscience and Nanotech-nology, 2016,16(12):12299.
63 Gao K, Shao Z, Li J , et al. Cellulose nanofiber-graphene all solid-state flexible supercapacitors[J]. Journal of Materials Chemistry A, 2013,1(1):63.
64 Huang Y, Lai F, Zhang L , et al. Elastic carbon aerogels reconstructed from electrospun nanofibers and graphene as three-dimensional networked matrix for efficient energy storage/conversion[J]. Scientific Reports, 2016,6:31541.
65 Kim T W, Park S J . Synjournal of reduced graphene oxide/thorn-like titanium dioxide nanofiber aerogels with enhanced electrochemical performance for supercapacitor[J]. Journal of Colloid and Interface Science, 2017,486:287.
66 Lv P, Yu K, Tan X , et al. Super-elastic graphene/carbon nanotube aerogels and their application as a strain-gauge sensor[J]. RSC Advances, 2016,6(14):11256.
67 Lv P, Tan X W, Yu K H , et al. Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties[J]. Carbon, 2016,99:222.
68 Wan W, Zhang R, Li W , et al. Graphene-carbon nanotube aerogel as an ultra-light,compressible and recyclable highly efficient absorbent for oil and dyes[J]. Environmental Science:Nano, 2016,3(1):107.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[3] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[7] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[8] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[9] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[10] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[11] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[12] 张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
[13] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[14] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[15] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[4] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[5] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[6] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[7] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[8] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[9] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
[10] Hong ZHANG,Ping ZHOU,Lan SUN,Hongyuan FAN. Effect of Solution Temperature on Microstructure and Properties of TP347HFG Heat Resistant Steel[J]. Materials Reports, 2018, 32(2): 234 -237 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed