Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1640-1645    https://doi.org/10.11896/cldb.18050087
  无机金属及其复合材料 |
Na在XC3(X=B,N,P)掺杂石墨烯表面吸附与扩散行为的
第一性原理研究
杨绍斌1, 单学颖1, 李思南2, 唐树伟1, 沈丁1, 孙闻2
1 辽宁工程技术大学材料科学与工程学院,阜新123000
2 辽宁工程技术大学矿业学院,阜新123000
Insight into the Adsorption and Diffusion Behaviors of Na on XC3 (X=B, N and P) Doping Graphene Surfaces: a First Principle Study
YANG Shaobin1, SHAN Xueying1, LI Sinan2, TANG Shuwei1, SHEN Ding1, SUN Wen2
1 Materials Science and Engineering, Liaoning Technical University, Fuxin 123000
2 College of Mining, Liaoning Technical University, Fuxin 123000
下载:  全 文 ( PDF ) ( 10232KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论(DFT)的第一性原理方法,对Na在本征石墨烯(PG)和掺杂单层石墨烯(BC3、NC3、PC3)表面的吸附结构、电子性质和扩散行为进行了详细的理论计算。结果表明,由于磷掺杂体系(PC3)P-C键剧烈变化,PG中原有的平面结构消失;而硼、氮掺杂(BC3和NC3)对PG结构的影响很小,B-C键和N-C键变化不显著,BC3和NC3仍然能维持PG的平面结构,并且没有正反面之分。电子结构计算表明,PG、BC3和NC3体系分别呈现半金属、p型掺杂和n型掺杂特征,而PC3表现出金属性;然而,在Na吸附后所有的材料都表现出金属性。进一步的吸附能计算发现磷、硼掺杂(PC3和BC3)能够有效改善石墨烯的储Na容量,从扩散机制的研究发现,Na在PC3掺杂体系表面的扩散能垒较小,仅为0.081 5 eV,有利于Na在PC3掺杂石墨烯表面的传输和扩散,是一种潜在的钠离子电池负极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨绍斌
单学颖
李思南
唐树伟
沈丁
孙闻
关键词:  掺杂石墨烯  钠吸附  导电性  扩散    
Abstract: The firstprinciples calculations based on density functional theory (DFT) were conducted to explore the adsorption structures, electronic pro-perties, and diffusion behaviors of Na on pristine graphene (PG) and XC3 (X=B, N and P) doping graphene surfaces in detail. The computational results showed that the P-doping damaged the planar surface structure of PG due to the considerable elongation of P-C bond, while the impact of B- and N-doping on PG was slight, with imperceptible variations in B-C and N-C bond. Consequently, BC3 and NC3 could still maintain the plane structure of PG, and there was no difference between positive and negative sides. The electronic structure calculations presented that PG is a semi-metallic material, while BC3 and NC3 materials are p- and n-type semiconductors, respectively. The biggest difference lay in the metallic nature of PC3 material. However, all the XC3 (X=B, N and P) doping graphene materials exhibit metallic characte-ristics after Na adsorption. It was discovered from further calculations that PC3 and BC3 doping could enlarge adsorption energy, which contributed to the Na storage capacity of graphene. In addition, the study of diffusion mechanism of Na on the PG and XC3 (X=B, N and P) indicated that the P-doping material (PC3) possessed the lowest diffusion barrier of 0.081 5 eV. Therefore, PC3 material is beneficial to the transference and diffusion of Na, and it is a potential anode material for sodium-ion batteries.
Key words:  doping graphene    sodium adsorption    conductivity    diffusion
                    发布日期:  2019-05-16
ZTFLH:  O641  
基金资助: 国家自然科学基金(51274119;21503039)
通讯作者:  lgdysb@163.com   
作者简介:  杨绍斌,辽宁工程技术大学教授,博士研究生导师,2000年博士毕业于大连理工大学化学工艺专业。现任辽宁工程技术大学材料科学与工程学院院长,辽宁省化工学会煤化工专业委员会常务理事以及阜新市环境科学与工程学会理事等。主要从事材料与化学学科的科研和教学工作,研究方向为新能源材料、碳素功能材料和煤化工等领域的研究工作。主持完成国家自然科学基金、教育部博士点基金和省部级科研基金项目等10余项。发表学术论文80余篇,其中SCI和EI等检索论文20余篇,发明专利授权10余项。
引用本文:    
杨绍斌, 单学颖, 李思南, 唐树伟, 沈丁, 孙闻. Na在XC3(X=B,N,P)掺杂石墨烯表面吸附与扩散行为的
第一性原理研究[J]. 材料导报, 2019, 33(10): 1640-1645.
YANG Shaobin, SHAN Xueying, LI Sinan, TANG Shuwei, SHEN Ding, SUN Wen. Insight into the Adsorption and Diffusion Behaviors of Na on XC3 (X=B, N and P) Doping Graphene Surfaces: a First Principle Study. Materials Reports, 2019, 33(10): 1640-1645.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050087  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1640
1 Zhang L C, Chen C H. Progress in Chemisty, 2011, 23(2-3), 275 (in Chinese).
张临超, 陈春华.化学进展, 2011, 23(2-3), 275.
2 Yang S B, Li S N, Sun W, et al. Journal of Functional Materials, 2016, 47(8), 8020 (in Chinese).
杨绍斌, 李思南, 孙闻, 等.功能材料, 2016, 47(8), 8020.
3 Guo J Z, Wan F, Wu X L, et al. Journal of Molecular Science, 2016, 32(4), 265 (in Chinese).
郭晋芝, 万放, 吴兴隆, 等.分子科学学报, 2016, 32(4), 265.
4 Li H, Wu C, Wu F, et al. Acta Chimica Sinica, 2014, 72(1), 21 (in Chinese).
李慧, 吴川, 吴锋, 等. 化学学报, 2014, 72(1), 21.
5 Zhang S W, Zhang J, Wu S D, et al. Acta Chimica Sinica, 2017, 75(2), 163 (in Chinese).
张思伟, 张俊, 吴思达, 等. 化学学报, 2017, 75(2), 163.
6 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3), 183.
7 Wang Y X, Chou S L, Liu H K, et al. Carbon, 2013, 57, 202.
8 Qin G, Zhang X, Wang C. Journal of Materials Chemistry A, 2014, 2(31), 12449.
9 Wu L, Lu H, Xiao L, et al. Journal of Power Sources, 2015, 293, 784.
10 Ling C, Mizuno F. Physical Chemistry Chemical Physics, 2014, 16(22), 10419.
11 Yao L H, Cao M S, Yang H J, et al. Computational Materials Science, 2014, 85, 179.
12 Wang C, Jia Y J, Liu Z C, et al. Industrial Catalysis, 2014, 22(7), 510 (in Chinese).
王灿, 贾银娟, 刘志成, 等. 工业催化, 2014, 22(7), 510.
13 Ma G Z. Sythesis and supercapacitor properties of P-doped graphene. Master’s Thesis, Harbin Institute of Technology, China, 2016 (in Chinese).
马贵智. 磷掺杂石墨烯的制备及其超级电容器性能研究. 硕士学位论文, 哈尔滨工业大学, 2016.
14 Sun J, Lee H W, Pasta M, et al. Nature Nanotechnology, 2015, 10(11), 980.
15 Mattsson A E, Schultz P A, Desjarlais M P, et al. Modelling and Simulation in Materials Science and Engineering, 2004, 13(1), R1.
16 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758.
17 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
18 Perdew J P, Parr R G, Levy M, et al. Physical Review Letters, 1982, 49(23), 1691.
19 Vanderbilt D. Physical Review B, 1990, 41(11), 7892.
20 Cheng L, Wang D X, Zhang Y, et al. Acta Physica Sinica, 2018, 67(4), 47101 (in Chinese).
程丽, 王德兴, 张杨, 等.物理学报, 2018, 67(4), 47101.
21 Xiong H H, Liu Z, Zhang H H, et al. Acta Physica Sinica, 2017, 66(16), 168101 (in Chinese).
熊辉辉, 刘昭, 张恒华, 等. 物理学报, 2017, 66(16), 168101.
22 Han H Y. First-principles studies of structural, electronic and hydrogen storage properties of layered CxN Compounds. Master’s Thesis, Henan Polytechnic University, China, 2011 (in Chinese).
韩海燕. 层状CxN化合物结构、电子性质和储氢性能的第一性原理研究. 硕士学位论文, 河南理工大学, 2011.
23 Hu Q K. Synthesis and first-principles study of layered BCx compounds. Ph.D. Thesis, Yanshan University, China, 2008 (in Chinese).
胡前库. 层状BCx化合物的合成与第一性原理研究.博士学位论文, 燕山大学, 2008.
24 Rani P, Jindal V K. RSC Advances, 2013, 3(3), 802.
25 Denis P A. Chemical Physics Letters, 2010, 492(4-6), 251.
26 Liu X J, Jia Y, Jiang Y J, et al. Journal of Functional Materials, 2015, 46(7), 7056 (in Chinese).
刘学杰, 贾颖, 姜永军, 等.功能材料, 2015, 46(7), 7056.
27 Datta D, Li J, Shenoy V B. ACS Applied Materials & Interfaces, 2014, 6(3), 1788.
28 Chan K T, Neaton J B, Cohen M L. Physical Review B, 2008, 77(23), 235430.
29 Qiao L, Qu C Q, Zhang H Z, et al. Diamond and Related Materials, 2010, 19(11), 1377.
30 Tian W, Yuan P F, Yu Z L, et al. Acta Physica Sinica, 2014, 64(4), 46102 (in Chinese).
田文, 袁鹏飞, 禹卓良, 等.物理学报, 2014, 64(4), 46102.
31 Nobuhara K, Nakayama H, Nose M, et al. Journal of Power Sources, 2013, 243, 585.
[1] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[2] 王忠辉, 辛勇. 高分子链运动对氧气扩散行为的影响[J]. 材料导报, 2019, 33(8): 1293-1297.
[3] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[4] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[5] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[6] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[7] 常洪雷, 金祖权, 刘健. 自干燥及水分扩散引起的高性能混凝土内部湿度演变[J]. 材料导报, 2019, 33(14): 2370-2375.
[8] 喻炎, 马凤森, 陆佳骏, 陈海波. 纤维素类可吸收止血材料的体外细胞毒性评价[J]. 材料导报, 2018, 32(6): 874-880.
[9] 石玗, 高海铭, 李广, 李想. 铜-钢高频感应钎焊工艺及其对接头组织和导电性的影响[J]. 材料导报, 2018, 32(6): 909-914.
[10] 闫二虎, 黄浩然, 刘贵仲, 班煜峰, 徐芬, 孙立贤. 一种氢渗透模型的构建及其在Nb基渗氢合金中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 725-729.
[11] 管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
[12] 彭晓文, 陈冷. 缓冲层Ta对退火Co/Cu/Co薄膜微观结构和界面互扩散的影响[J]. 材料导报, 2018, 32(22): 3931-3935.
[13] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[14] 胡志涛, 李明伟, 尹华伟, 刘杭. 磷酸二氢钾晶体薄表面层生长动力学实时显微研究[J]. 材料导报, 2018, 32(18): 3116-3122.
[15] 周娩红,陈石林,杨建校,郭建光. 镀铜CF/ABS树脂复合材料的导电性能[J]. 《材料导报》期刊社, 2018, 32(10): 1592-1596.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed