Research Progress on the Application of ZIF-derived Materials in Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions
ZHAO Shuaikai1, LI Yaru1,2, REN Yongpeng1,2,3,*, WANG Changji1,2,3, PAN Kunming1,2,3,*, WANG Limeng1, LYU Beibei1, XIA Liangbin1, CHEN Xuemin1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China 2 Henan Key Laboratory of High-temperature Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, Henan, China 3 Longmen Laboratory, Luoyang 471000, Henan, China
Abstract: Oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are three vital electrocatalytic semi-reactions commonly constrained by reaction kinetics. Efficient and stable electrocatalysts can lower the reaction activation energy, enhancing the performance of new energy devices such as fuel cells, metal-air batteries and electrolytic cells. Zeolite imidazole framework (ZIF) structures possess porous structure and high specific surface area, with their derivatives have dispersed and stable active sites, which can improve catalytic performance while reducing metal consumption. This paper presents the structure-activity relationship between typical ZIF-derived material's structure, active center and properties based on their research status in the fields of ORR, OER, and HER. Firstly, the electrocatalytic mechanism and typical preparation methods of ZIF-derived materials were summarized, followed by a discussion on the effects of structure regulation and active center regulation on the catalytic performance of ZIF-derived materials. Finally, the future development and optimization design of the material for electrocatalysis were prospected.
1 Birol F, Argiri M. Energy, 1999, 24(11), 905. 2 Gao Y, Xiao Z, Kong D, et al. Nano Energy, 2019, 64, 103879. 3 Wen X, Guan J. Applied Materials Today, 2019, 16, 146. 4 Radwan A, Jin H, He D, et al. Nano-Micro Letters, 2021, 13, 1. 5 Zhou Y, Abazari R, Chen J, et al. Coordination Chemistry Reviews, 2022, 451, 214264. 6 Zhai Z, Yan W, Dong L, et al. Journal of Materials Chemistry A, 2021, 9(36), 20320. 7 Khan M, Janjua N K, Ahmad A, et al. International Journal of Energy Research, 2022, 46(10), 14161. 8 Tang W, Li B, Teng K, et al. Journal of Materiomics, 2022, 8(2), 454. 9 Lin S Y, Chen Y P, Cao Y, et al. Journal of Power Sources, 2022, 521, 230926. 10 Zhao K, Zhu W, Liu S, et al. Nanoscale Advances, 2020, 2(2), 536. 11 Chen Y, Xu Y, Niu S, et al. Chem Communications, 2021, 57(37), 4572. 12 Khan S, Noor T, Iqbal N, et al. ChemNanoMat, 2022, 8(7), e202200115. 13 Yang Y, Fu J, Zhang Y, et al. Journal of Physical Chemistry C, 2021, 125(41), 22397. 14 Zhang H, Su J, Zhao K, et al. Chemelectrochem, 2020, 7(8), 1805. 15 Sun T, Xu L, Wang D, et al. Nano Research, 2019, 12(9), 2067. 16 Wang Y, Waterhouse G I N, Shang L, et al. Advanced Energy Materials, 2021, 11(15), 2003323. 17 Jadhav H S, Bandal H A, Ramakrishna S, et al. Advanced Materials, 2022, 34(11), 2107072. 18 Chen Z, Qing H, Zhou K, et al. Progress in Materials Science, 2020, 108, 100618. 19 Jiao Y Q, Li M T, Qin C, et al. Crystengcomm, 2017, 19(13), 1721. 20 Saliba D, Ammar M, Rammal M, et al. Journal of the American Chemical Society, 2018, 140(5), 1812. 21 Zhu B, Xia D, Zou R. Coordination Chemistry Reviews, 2018, 376, 430. 22 Ploetz E, Engelke H, Laechelt U, et al. Advanced Functional Materials, 2020, 30(41), 1909062. 23 Seh Z W, Kibsgaard J, Dickens C F, et al. Science, 2017, 355(6321), eaad4998. 24 Hao B, Tang Y T, Li X F, et al. Materials Reports, 2020, 34(11), 11035(in Chinese). 郝博, 唐一桐, 李雪霏, 等. 材料导报, 2020, 34(11), 11035. 25 Ren Y F, Luan W L, Jiang T. Materials Reports, 2022, 36(19), 20080238(in Chinese). 任雨峰, 栾伟玲, 姜滔. 材料导报, 2022, 36(19), 20080238. 26 Zhong G, Liu D, Zhang J. Journal of Materials Chemistry A, 2018, 6(5), 1887. 27 Liu B, Shioyama H, Akita T, et al. Journal of the American Chemical Society, 2008, 130(16), 5390. 28 Cong Y, Huang S, Mei Y, et al. Chemistry-A European Journal, 2021, 27(64), 15866. 29 Nemiwal M, Gosu V, Zhang T C, et al. International Journal of Hydrogen Energy, 2021, 46(17), 10216. 30 Pan Y, Abazari R, Wu Y, et al. Electrochemistry Communications, 2021, 126, 107024. 31 Maiti A. Dalton Transactions, 2020, 49(33), 11430. 32 Medford A J, Vojvodic A, Hummelshøj J S, et al. Journal of Catalysis, 2015, 328, 36. 33 Zeradjanin A R, Polymeros G, Toparli C, et al. Physical Chemistry Chemical Physics, 2020, 22(16), 8768. 34 Sim H Y F, Chen J R T, Koh C S L, et al. Angewandte Chemie International Edition, 2020, 59(39), 16997. 35 Wang H F, Chen L, Pang H, et al. Chemical Society Reviews, 2020, 49(5), 1414. 36 Arafat Y, Azhar M R, Zhong Y, et al. Advanced Energy Materials, 2021, 11(26), 2100514. 37 Guo D, Shibuya R, Akiba C, et al. Science, 2016, 351(6271), 361. 38 Yang H B, Miao J, Hung S F, et al. Science Advances, 2016, 2(4), e1501122. 39 Jiao Y, Zheng Y, Davey K, et al. Nature Energy, 2016, 1(10), 1. 40 Kaneti Y V, Tang J, Salunkhe R R, et al. Advanced materials, 2017, 29(12), 1604898. 41 Zhang X, Lu P, Zhang C, et al. Journal of Catalysis, 2017, 356, 229. 42 Chen H, You S, Ma Y, et al. Chemistry of Materials, 2018, 30(17), 6014. 43 Wang W, Yan H, Anand U, et al. Journal of the American Chemical Society, 2021, 143(4), 1854. 44 Park K S, Ni Z, Cote A P, et al. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27), 10186. 45 Hayashi H, Cote A P, Furukawa H, et al. Nature Materials, 2007, 6(7), 501. 46 Banerjee R, Phan A, Wang B, et al. Science, 2008, 319(5865), 939. 47 Wang B, Cote A P, Furukawa H, et al. Nature, 2008, 453(7192), 207. 48 Santoso E, Ediati R, Istiqomah Z, et al. Microporous and Mesoporous Materials, 2021, 310, 110620. 49 Wen J, Yang L. Water Research, 2022, 218, 118490. 50 Malekmohammadi M, Fatemi S, Razavian M, et al. Solid State Sciences, 2019, 91, 108. 51 Niu X Q, Kang X Y, Ma Y X, et al. Materials Reports, 2022, 36(14), 21050021(in Chinses). 牛晓勤, 康小雅, 马应霞, 等. 材料导报, 2022, 36(14), 21050021. 52 Li G, Xie G, Gong C, et al. Microchimica Acta, 2022, 189(2), 80. 53 Xu W, Chen H, Jie K, et al. Angewandte Chemie International Edition, 2019, 58(15) 5018. 54 Kang X, Fu G, Song Z, et al. Journal of Alloys and Compounds, 2019, 795, 462. 55 Hu J, Cao L, Wang Z, et al. Composites Communications, 2021, 27, 100866. 56 Ai K, Li Z, Cui X. Journal of Power Sources, 2017, 368, 46. 57 Song Y, Zhang X, Cui X, et al. Journal of Catalysis, 2019, 372, 174. 58 Liu P, Gao S, Wang Y, et al. Chemical Engineering Journal, 2020, 381, 122853. 59 Yun Y, Zeng H, Li L, et al. Advanced Materials, 2023, 35(7), e2209561. 60 Liu Q, Li Y, Zheng L, et al. Advanced Energy Materials, 2020, 10(20), 2000689. 61 Chen W, Pei J, He C T, et al. Advanced Materials, 2018, 30(30), 1800396. 62 Jiang R, Li L, Sheng T, et al. Journal of the American Chemical Society, 2018, 140(37), 11594. 63 Pan Y, Sun K, Liu S, et al. Journal of the American Chemical Society, 2018, 140(7), 2610. 64 Feng J, Zhou H, Chen D, et al. Electrochimica Acta, 2020, 331, 135445. 65 Zhang S L, Guan B Y, Lou X W D. Small, 2019, 15(13), e1805324. 66 Rauf M, Pi L, Wang J, et al. International Journal of Hydrogen Energy, 2022, 47(28), 13616. 67 Zhu Y, Zhang Z, Lei Z, et al. Carbon, 2020, 167, 188. 68 Li J, Yan M, Zhou X, et al. Advanced Functional Materials, 2016, 26(37), 6785. 69 Zhang Z, Hao J, Yang W, et al. RSC Advances, 2016, 6(12), 9647. 70 Li W, Gao X, Wang X, et al. Journal of Power Sources, 2016, 330, 156. 71 Tong J, Li Q, Li W, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(11), 10240. 72 Amiinu I S, Liu X, Pu Z, et al. Advanced Functional Materials, 2018, 28(5), 1704638. 73 Yan J, Zheng X, Wei C, et al. Carbon, 2021, 171, 320. 74 Song Z, Liu W, Cheng N, et al. Materials Horizons, 2017, 4(5), 900. 75 Jiang M, Cao X, Zhu D, et al. Electrochimica Acta, 2016, 196, 699. 76 Liang L, Jin H, Zhou H, et al. Nano Energy, 2021, 88, 106221. 77 Huang J, Du C, Nie J, et al. Electrochimica Acta, 2019, 326, 134982. 78 Yao Y, Lan L, Li X, et al. Small, 2020, 16(33), 1907282. 79 Qi J, Chen M, Zhang W, et al. ChemCatChem, 2019, 11(24), 5969. 80 Sun T, Xu L, Yan Y, et al. ACS Catalysis, 2016, 6(3), 1446. 81 Kondori A, Esmaeilirad M, Baskin A, et al. Advanced Energy Materials, 2019, 9(22), 1900516. 82 Duan Y, Yu Z Y, Hu S J, et al. Angewandte Chemie International Edition, 2019, 58(44), 15772. 83 Liang C, Zou P, Nairan A, et al. Energy & Environmental Science, 2020, 13(1), 86. 84 Hussain N, Wu F, Xu L, et al. Nano Research, 2019, 12(12), 2941. 85 Hammer B, Norskov J K. Nature, 1995, 376(6537), 238. 86 Yu Z Y, Duan Y, Gao M R, et al. Chemical Science, 2017, 8(2), 968. 87 Ai L H, Su J F, Wang M, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8), 9912. 88 Das D, Santra S, Nanda K K. ACS Applied Materials & Interfaces, 2018, 10(41), 35025. 89 Ma Y Y, Lang Z L, Yan L K, et al. Energy & Environmental Science, 2018, 11(8), 2114. 90 Peng W, Yang X, Mao L, et al. Chemical Engineering Journal, 2021, 407, 127. 91 Li Y, Li J, Dai Y, et al. Materials Today Energy, 2021, 21, 100737. 92 Guo Z, Ma Y, Zhao Y, et al. Journal of Power Sources, 2022, 542, 231723. 93 Pan J, Li S, Zhang L, et al. ACS Applied Energy Materials, 2022, 5(6), 6886. 94 Tang J, Salunkhe R R, Zhang H B, et al. Scientific Reports, 2016, 6(1) 30295. 95 Ning H, Li G, Chen Y, et al. ACS Applied Materials & Interfaces, 2018, 11(2), 1957. 96 Parkash A. Journal of Porous Materials, 2021, 28(4), 1245. 97 Zhang M, Yan F, Bai J, et al. Microporous and Mesoporous Materials, 2021, 312, 110627. 98 Qiao L, Zhu A, Zeng W, et al. Journal of Materials Chemistry A, 2020, 8(5), 2453. 99 Lei Y, Wei L, Zhai S, et al. Materials Chemistry Frontiers, 2018, 2(1), 102. 100 Yang X, Cheng J, Yang X, et al. Chemical Engineering Journal, 2023, 451, 138977. 101 Jing Y, Yin H, Zhang Y, et al. International Journal of Hydrogen Energy, 2020, 45(38), 19174. 102 Chen Z, Ha Y, Jia H, et al. Advanced Energy Materials, 2019, 9(19), 1803918. 103 Liu S, Zhang H, Zhao Q, et al. Carbon, 2016, 106, 74. 104 Guo R, Shi W, Liu W, et al. Chemical Engineering Journal, 2022, 429, 132478. 105 Li D, Shi X, Sun S, et al. Inorganic Chemistry, 2022, 61(25), 9685. 106 Liu Q, Li Y, Zheng L, et al. Advanced Energy Materials, 2020, 10(20), 2000689. 107 Zhou G, Liu G, Liu X, et al. Advanced Functional Materials, 2021, 32(4), 2107608. 108 Zhu W, Zhang W, Li Y, et al. Journal of Materials Chemistry A, 2018, 6(47), 24277.