Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 11-19    https://doi.org/10.11896/j.issn.1005-023X.2017.011.002
  材料综述 |
陷光结构在GaAs薄膜太阳电池中的应用*
刘雨生1, 刘雯1, 张淑媛1, 杨富华1,2, 王晓东1,2
1 中国科学院半导体研究所半导体集成技术工程研究中心,北京 100083;
2 中国科学院大学微电子学院, 北京 101408
Applying Light Trapping Structure to GaAs Thin Film Solar Cells: A State-of-the-Art Review
LIU Yusheng1, LIU Wen1, ZHANG Shuyuan1, YANG Fuhua1,2, WANG Xiaodong1,2
1 Engineering Research Center of Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083;
2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 101408
下载:  全 文 ( PDF ) ( 2392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陷光结构由于其独特的光学特性,在光伏器件中发挥的作用越来越重要。目前硅基太阳电池中陷光结构的应用很常见,然而在GaAs薄膜太阳电池中陷光结构的报道并不多。详细介绍了陷光结构的原理及其在GaAs薄膜电池中的研究现状和应用情况。综述了GaAs薄膜太阳能电池中常用的三类陷光结构:正面陷光结构(包括纳米颗粒、纳米线、纳米锥等)、背面陷光结构(如镜面背反射层)以及混合陷光结构。大量研究表明,陷光结构的使用可以进一步提高GaAs薄膜电池的光电转换效率,一定程度上达到降低电池生产成本的目的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雨生
刘雯
张淑媛
杨富华
王晓东
关键词:  GaAs薄膜太阳电池  正面陷光结构  背面陷光结构  混合陷光结构    
Abstract: Owing to its unique optical properties, light trapping structure plays a more and more important role in the photovoltaic devices. At present, the application of light trapping structure in silicon-based solar cells is quite popular, but its application in GaAs thin film solar cells is little reported. In this article, the principle, research status of light trapping structure and its applications in GaAs thin film solar cells are introduced in detail. Three kinds of light trapping structures for GaAs thin film solar cells are summarized,including light trapping structure on the front surface (such as metal nanoparticle, nanowire, nanocone, etc.),light trapping structure on the back surface (such as back reflection layer), and hybrid light trapping structure. It shows that the application of light trapping structure can further improve photoelectric conversion efficiency of the GaAs thin film solar cells, and can also achieve the goal of reducing the production cost of the solar cells.
Key words:  GaAs thin film solar cell    light trapping structure on the front surface    light trapping structure on the back surface    hybrid light trapping structure
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TB324  
基金资助: 国家自然科学基金(61274066;61474115;61504138);863项目(2014AA032602)
通讯作者:  王晓东:通讯作者,男,1972年生,教授,博士研究生导师,主要从事半导体微纳加工技术、高效太阳能电池、纳米热电器件研究 E-mail:xdwang@semi.ac.cn   
作者简介:  刘雨生:男,硕士研究生,研究方向为砷化镓电池 E-mail:liuyusheng@semi.ac.cn
引用本文:    
刘雨生, 刘雯, 张淑媛, 杨富华, 王晓东. 陷光结构在GaAs薄膜太阳电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(11): 11-19.
LIU Yusheng, LIU Wen, ZHANG Shuyuan, YANG Fuhua, WANG Xiaodong. Applying Light Trapping Structure to GaAs Thin Film Solar Cells: A State-of-the-Art Review. Materials Reports, 2017, 31(11): 11-19.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.002  或          http://www.mater-rep.com/CN/Y2017/V31/I11/11
1 Zhao Yuwen, Wu Dacheng, Wang Sicheng, et al. China PV industry development report[R]. Sol Energy,2008(6):6(in Chinese).
赵玉文,吴达成,王斯成,等.中国光伏产业发展研究报告[R].太阳能,2008(6):6
2 Lee K, Zimmerman J D, et al. Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics[J]. Adv Funct Mater, 2014, 24 (27):4284
3 Kayes B M, Nie H, Twist R, et al. 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination[C]∥IEEE Photovoltaic Specialists Conference.Seattle, USA, 2011.
4 Yablonovitch E. Intensity enhancement in textured optical sheets for solar cells[J]. IEEE Trans Electron Devices, 1982, 29(2):300.
5 Stuart H, Hall D. Thermodynamic limit to light trapping in thin planar structures[J]. J Opt Soc Am A, 1997, 14(11):3001.
6 Yu Z, Raman A, Fan S. Fundamental limit of light trapping in gra-ting structures[J]. Opt Express,2010,18 (S3):A366.
7 Brongersma M L, Cui Y, Fan S. Light management for photovol-taics using high-index nanostructures[J].Nat Mater, 2014, 13(5):451.
8 Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Phys Rev B:Condensed Matter, 2002,65(23):121.
9 Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells[J]. PNAS,2010,107(41):17491.
10 Green M A. Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices[J]. Prog Photovolt Res Appl, 2011, 19(4):473.
11 Callahan D M, Munday J N, Atwater H A. Solar cell light trapping beyond the ray optic limit[J]. Nano Lett,2012, 12(1):214.
12 Miller O D, Yablonovitch E, Kurtz S R. Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit[J]. IEEE J Photovolt,2012, 2(3):303.
13 Niv A, Gharghi M, Gladden C, et al. Near-field electromagnetic theory for thin solar cells[J]. Phys Rev Lett,2012,109:138701.
14 Allen Taflove, Susan C, Hagness. Computational electrodynamics:The finite-difference time-domain method[M]. 2nd edition.Artech House, Inc,2000.
15 Grandidier J, Callahan D M, Munday J N, et al. Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres[J]. IEEE J Photovolt,2012,2(2):123.
16 Wen L, Zhao Z, Li X, et al. Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells[J]. Appl Phys Lett,2011,99(14):143116.
17 Li Y,Yan X,Wu Y,et al. Plasmon-enhanced light absorption in GaAs nanowire array solar cells[J]. Nanosc Res Lett, 2015,10(1):1.
18 Jian-Ming Jin. The finite element method in electromagnetics[M].2nd Edition. John Wiley&Sons, Inc,2002.
19 Hong L, Rusli, Wang X, et al. Design principles for plasmonic thin film GaAs solar cells with high absorption enhancement[J]. J Appl Phys,2012,112(5):054326-5.
20 Hong L, Yu H, Wang X, et al. Surface nanostructure optimization for GaAs solar cell application[J]. Jpn J Appl Phys,2012,51(51):1472.
21 Zhang X, Sun X, Jiang J D. Absorption enhancement using nano-needle array for solar cell[J]. Appl Phys Lett,2013, 103(21):211110.
22 Chen Jianjun. Structures design and properties study of metamate-rials[D]. Bejing:Institute of Semiconductors,Chinese Academy of Sciences,2009.
陈建军. 电磁特异介质的结构设计与性质研究[D].北京:中国科学院半导体研究所,2009.
23 Liu S, Ding D, Johnson S R, et al. Approaching single-junction theo-retical limit using ultra-thin GaAs solar cells with optimal optical designs[C]∥IEEE Photovoltaic Specialists Conference.Austin,TX,USA,2012.
24 Zhou K, Li X, Liu S, et al. Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells[J]. Nanotechnology,2014,25(41):5401.
25 Tsui K H, Lin Q, Chou H, et al. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics[J]. Adv Mater,2014,26(18): 2805.
26 Chen Yankun, Han Weihua,Wang Xiaodong, et al. Surface nanostructures of silicon solar cells and their preparations[J]. Micronanoelectron Technol,2012,49(6):388(in Chinese).
陈燕坤, 韩伟华, 王晓东,等. 硅基太阳电池的表面纳米 织构及制备[J]. 微纳电子技术,2012,49(6):388.
27 Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells[J]. Appl Phys Lett,2008,93(12):121904.
28 Liu W, Wang X, Li Y, et al. Surface plasmon enhanced GaAs thin film solar cells[J]. Sol Energy Mater Sol Cells, 2011,95(2):693.
29 Davies D G, Whittaker D M, Wilson L R. Hybrid gold nanoantenna array—Dielectric thin film anti-reflection coatings on GaAs[J]. Solid State Commun,2012,152(24):2156.
30 Dabirian A, Taghavinia N. Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles[J]. ACS Appl Mater Interfaces,2015,7(27):14926.
31 Hylton N P, Li X, Giannini V, et al. Al nanoparticle arrays for broadband absorption enhancements in GaAs devices[C]∥IEEE Photovoltaic Specialists Conference.FL,2013.
32 Hylton N P, Li X, Giannini V, et al. Loss mitigation in plasmonic solar cells: Aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes[J]. Sci Rep,2013,3(10):2874.
33 Manakov S M, Dikhanbaev K K, Aueylkhankyzy M, et al. Light trapping enhancement in gallium arsenide solar cells[J]. J Nanoelectron Optoelectron,2014,9(4):511.
34 Soci C, Zhang A, Bao X Y, et al. Nanowire photodetectors [J]. J Nanosci Nanotechnol,2010,10(3):1430.
35 Han N, Yang Z X, Wang F, et al. High-performance GaAs nanowire solar cells for flexible and transparent photovoltaics[J]. ACS Appl Mater Interfaces,2015, 7(36):20454.
36 Aberg I, Vescovi G, Asoli D, et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun[J]. IEEE J Photovolt,2015,6(1):1.
37 Lin Y R, Lai K Y, Wanga H P, et al. Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties [J]. Nanoscale,2010,2(10):2765.
38 Kang Y,Chen Y,Huo Y, et al. Ultra-thin film nanostructured gal-lium arsenide solar cells[J]. Proc SPIE, 2014,9277:927718.
39 Vandamme N, Chen H L, Gaucher A, et al. Ultrathin GaAs solar cells with a silver back mirror[J]. IEEE J Photovolt, 2015,5(2):565.
40 Yang W, Allen C, Li J J, et al. Ultra-thin GaAs single-junction solar cells integrated with lattice-matched ZnSe as a reflective back scattering layer[C]∥IEEE Photovoltaic Specialists Conference.Austin, TX,USA,2012.
41 Yang W, Becker J, Kuo Y S, et al. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer[J]. J Appl Phys,2014,115(20):3105.
42 Yang W, Becker J, Kuo Y S, et al. Ultra-thin GaAs single-junction solar cells integrated with an AlInP layer for reflective back scatte-ring[C]∥ Photovoltaic Specialists Conference.Tampa,FL,2013.
43 Inoue T, Watanabe K, Fujii H, et al. Enhanced light trapping in multiple quantum wells by thin-film structure and backside grooves with dielectric interface[J]. IEEE J Appl Phys,2015,5(2):1.
44 Liang D, Kang Y, Huo Y, et al. GaAs thin film nanostructure arrays for Ⅲ-Ⅴ solar cell applications[C]∥Photonic and Phononic Properties of Engineered Nanostructures Ⅱ.Stanforduniv,USA,2012.
45 Leung S F, Zhang Q, Xiu F, et al. Light management with nanostructures foroptoelectronic devices[J]. J Phys Chem Lett,2014,5(8):1479.
46 Lee S M, Kwong A,Jung D, et al. High performance ultrathin gaas solar cells enabled with heterogeneously integrated dielectric periodic nanostructures[J]. ACS Nano, 2015,9(10):10356.
[1] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[2] 王忠辉, 辛勇. 高分子链运动对氧气扩散行为的影响[J]. 材料导报, 2019, 33(8): 1293-1297.
[3] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[4] 林琳, 陈景民, 王会, 李久盛, 陈晋阳, 曾祥琼. 皮肤敷料的研究进展[J]. 材料导报, 2019, 33(1): 65-72.
[5] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[6] 王志芳,宣承楷,刘雪敏,施雪涛. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报, 2018, 32(19): 3456-3464.
[7] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[8] 李超, 马成章, 黄绍军, 闵春刚, 黄秋玲, 孙晓东. 含1,3,4-噻二唑环聚合物的合成及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1891-1902.
[9] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[10] 李军辉, 廖至金, 李志君, 廖双泉, 于人同. 羧基官能化聚丁二烯:点击化学合成及对环氧树脂的固化机理[J]. 材料导报, 2018, 32(6): 983-986.
[11] 朱建勇, 何兆益. 沥青胶结料自愈合研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 847-854.
[12] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[13] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[14] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[15] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed