Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 11-19    https://doi.org/10.11896/j.issn.1005-023X.2017.011.002
  材料综述 |
陷光结构在GaAs薄膜太阳电池中的应用*
刘雨生1, 刘雯1, 张淑媛1, 杨富华1,2, 王晓东1,2
1 中国科学院半导体研究所半导体集成技术工程研究中心,北京 100083;
2 中国科学院大学微电子学院, 北京 101408
Applying Light Trapping Structure to GaAs Thin Film Solar Cells: A State-of-the-Art Review
LIU Yusheng1, LIU Wen1, ZHANG Shuyuan1, YANG Fuhua1,2, WANG Xiaodong1,2
1 Engineering Research Center of Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083;
2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 101408
下载:  全 文 ( PDF ) ( 2392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陷光结构由于其独特的光学特性,在光伏器件中发挥的作用越来越重要。目前硅基太阳电池中陷光结构的应用很常见,然而在GaAs薄膜太阳电池中陷光结构的报道并不多。详细介绍了陷光结构的原理及其在GaAs薄膜电池中的研究现状和应用情况。综述了GaAs薄膜太阳能电池中常用的三类陷光结构:正面陷光结构(包括纳米颗粒、纳米线、纳米锥等)、背面陷光结构(如镜面背反射层)以及混合陷光结构。大量研究表明,陷光结构的使用可以进一步提高GaAs薄膜电池的光电转换效率,一定程度上达到降低电池生产成本的目的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雨生
刘雯
张淑媛
杨富华
王晓东
关键词:  GaAs薄膜太阳电池  正面陷光结构  背面陷光结构  混合陷光结构    
Abstract: Owing to its unique optical properties, light trapping structure plays a more and more important role in the photovoltaic devices. At present, the application of light trapping structure in silicon-based solar cells is quite popular, but its application in GaAs thin film solar cells is little reported. In this article, the principle, research status of light trapping structure and its applications in GaAs thin film solar cells are introduced in detail. Three kinds of light trapping structures for GaAs thin film solar cells are summarized,including light trapping structure on the front surface (such as metal nanoparticle, nanowire, nanocone, etc.),light trapping structure on the back surface (such as back reflection layer), and hybrid light trapping structure. It shows that the application of light trapping structure can further improve photoelectric conversion efficiency of the GaAs thin film solar cells, and can also achieve the goal of reducing the production cost of the solar cells.
Key words:  GaAs thin film solar cell    light trapping structure on the front surface    light trapping structure on the back surface    hybrid light trapping structure
出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TB324  
基金资助: 国家自然科学基金(61274066;61474115;61504138);863项目(2014AA032602)
通讯作者:  王晓东:通讯作者,男,1972年生,教授,博士研究生导师,主要从事半导体微纳加工技术、高效太阳能电池、纳米热电器件研究 E-mail:xdwang@semi.ac.cn   
作者简介:  刘雨生:男,硕士研究生,研究方向为砷化镓电池 E-mail:liuyusheng@semi.ac.cn
引用本文:    
刘雨生, 刘雯, 张淑媛, 杨富华, 王晓东. 陷光结构在GaAs薄膜太阳电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(11): 11-19.
LIU Yusheng, LIU Wen, ZHANG Shuyuan, YANG Fuhua, WANG Xiaodong. Applying Light Trapping Structure to GaAs Thin Film Solar Cells: A State-of-the-Art Review. Materials Reports, 2017, 31(11): 11-19.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.002  或          https://www.mater-rep.com/CN/Y2017/V31/I11/11
1 Zhao Yuwen, Wu Dacheng, Wang Sicheng, et al. China PV industry development report[R]. Sol Energy,2008(6):6(in Chinese).
赵玉文,吴达成,王斯成,等.中国光伏产业发展研究报告[R].太阳能,2008(6):6
2 Lee K, Zimmerman J D, et al. Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics[J]. Adv Funct Mater, 2014, 24 (27):4284
3 Kayes B M, Nie H, Twist R, et al. 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination[C]∥IEEE Photovoltaic Specialists Conference.Seattle, USA, 2011.
4 Yablonovitch E. Intensity enhancement in textured optical sheets for solar cells[J]. IEEE Trans Electron Devices, 1982, 29(2):300.
5 Stuart H, Hall D. Thermodynamic limit to light trapping in thin planar structures[J]. J Opt Soc Am A, 1997, 14(11):3001.
6 Yu Z, Raman A, Fan S. Fundamental limit of light trapping in gra-ting structures[J]. Opt Express,2010,18 (S3):A366.
7 Brongersma M L, Cui Y, Fan S. Light management for photovol-taics using high-index nanostructures[J].Nat Mater, 2014, 13(5):451.
8 Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Phys Rev B:Condensed Matter, 2002,65(23):121.
9 Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells[J]. PNAS,2010,107(41):17491.
10 Green M A. Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices[J]. Prog Photovolt Res Appl, 2011, 19(4):473.
11 Callahan D M, Munday J N, Atwater H A. Solar cell light trapping beyond the ray optic limit[J]. Nano Lett,2012, 12(1):214.
12 Miller O D, Yablonovitch E, Kurtz S R. Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit[J]. IEEE J Photovolt,2012, 2(3):303.
13 Niv A, Gharghi M, Gladden C, et al. Near-field electromagnetic theory for thin solar cells[J]. Phys Rev Lett,2012,109:138701.
14 Allen Taflove, Susan C, Hagness. Computational electrodynamics:The finite-difference time-domain method[M]. 2nd edition.Artech House, Inc,2000.
15 Grandidier J, Callahan D M, Munday J N, et al. Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres[J]. IEEE J Photovolt,2012,2(2):123.
16 Wen L, Zhao Z, Li X, et al. Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells[J]. Appl Phys Lett,2011,99(14):143116.
17 Li Y,Yan X,Wu Y,et al. Plasmon-enhanced light absorption in GaAs nanowire array solar cells[J]. Nanosc Res Lett, 2015,10(1):1.
18 Jian-Ming Jin. The finite element method in electromagnetics[M].2nd Edition. John Wiley&Sons, Inc,2002.
19 Hong L, Rusli, Wang X, et al. Design principles for plasmonic thin film GaAs solar cells with high absorption enhancement[J]. J Appl Phys,2012,112(5):054326-5.
20 Hong L, Yu H, Wang X, et al. Surface nanostructure optimization for GaAs solar cell application[J]. Jpn J Appl Phys,2012,51(51):1472.
21 Zhang X, Sun X, Jiang J D. Absorption enhancement using nano-needle array for solar cell[J]. Appl Phys Lett,2013, 103(21):211110.
22 Chen Jianjun. Structures design and properties study of metamate-rials[D]. Bejing:Institute of Semiconductors,Chinese Academy of Sciences,2009.
陈建军. 电磁特异介质的结构设计与性质研究[D].北京:中国科学院半导体研究所,2009.
23 Liu S, Ding D, Johnson S R, et al. Approaching single-junction theo-retical limit using ultra-thin GaAs solar cells with optimal optical designs[C]∥IEEE Photovoltaic Specialists Conference.Austin,TX,USA,2012.
24 Zhou K, Li X, Liu S, et al. Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells[J]. Nanotechnology,2014,25(41):5401.
25 Tsui K H, Lin Q, Chou H, et al. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics[J]. Adv Mater,2014,26(18): 2805.
26 Chen Yankun, Han Weihua,Wang Xiaodong, et al. Surface nanostructures of silicon solar cells and their preparations[J]. Micronanoelectron Technol,2012,49(6):388(in Chinese).
陈燕坤, 韩伟华, 王晓东,等. 硅基太阳电池的表面纳米 织构及制备[J]. 微纳电子技术,2012,49(6):388.
27 Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells[J]. Appl Phys Lett,2008,93(12):121904.
28 Liu W, Wang X, Li Y, et al. Surface plasmon enhanced GaAs thin film solar cells[J]. Sol Energy Mater Sol Cells, 2011,95(2):693.
29 Davies D G, Whittaker D M, Wilson L R. Hybrid gold nanoantenna array—Dielectric thin film anti-reflection coatings on GaAs[J]. Solid State Commun,2012,152(24):2156.
30 Dabirian A, Taghavinia N. Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles[J]. ACS Appl Mater Interfaces,2015,7(27):14926.
31 Hylton N P, Li X, Giannini V, et al. Al nanoparticle arrays for broadband absorption enhancements in GaAs devices[C]∥IEEE Photovoltaic Specialists Conference.FL,2013.
32 Hylton N P, Li X, Giannini V, et al. Loss mitigation in plasmonic solar cells: Aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes[J]. Sci Rep,2013,3(10):2874.
33 Manakov S M, Dikhanbaev K K, Aueylkhankyzy M, et al. Light trapping enhancement in gallium arsenide solar cells[J]. J Nanoelectron Optoelectron,2014,9(4):511.
34 Soci C, Zhang A, Bao X Y, et al. Nanowire photodetectors [J]. J Nanosci Nanotechnol,2010,10(3):1430.
35 Han N, Yang Z X, Wang F, et al. High-performance GaAs nanowire solar cells for flexible and transparent photovoltaics[J]. ACS Appl Mater Interfaces,2015, 7(36):20454.
36 Aberg I, Vescovi G, Asoli D, et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun[J]. IEEE J Photovolt,2015,6(1):1.
37 Lin Y R, Lai K Y, Wanga H P, et al. Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties [J]. Nanoscale,2010,2(10):2765.
38 Kang Y,Chen Y,Huo Y, et al. Ultra-thin film nanostructured gal-lium arsenide solar cells[J]. Proc SPIE, 2014,9277:927718.
39 Vandamme N, Chen H L, Gaucher A, et al. Ultrathin GaAs solar cells with a silver back mirror[J]. IEEE J Photovolt, 2015,5(2):565.
40 Yang W, Allen C, Li J J, et al. Ultra-thin GaAs single-junction solar cells integrated with lattice-matched ZnSe as a reflective back scattering layer[C]∥IEEE Photovoltaic Specialists Conference.Austin, TX,USA,2012.
41 Yang W, Becker J, Kuo Y S, et al. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer[J]. J Appl Phys,2014,115(20):3105.
42 Yang W, Becker J, Kuo Y S, et al. Ultra-thin GaAs single-junction solar cells integrated with an AlInP layer for reflective back scatte-ring[C]∥ Photovoltaic Specialists Conference.Tampa,FL,2013.
43 Inoue T, Watanabe K, Fujii H, et al. Enhanced light trapping in multiple quantum wells by thin-film structure and backside grooves with dielectric interface[J]. IEEE J Appl Phys,2015,5(2):1.
44 Liang D, Kang Y, Huo Y, et al. GaAs thin film nanostructure arrays for Ⅲ-Ⅴ solar cell applications[C]∥Photonic and Phononic Properties of Engineered Nanostructures Ⅱ.Stanforduniv,USA,2012.
45 Leung S F, Zhang Q, Xiu F, et al. Light management with nanostructures foroptoelectronic devices[J]. J Phys Chem Lett,2014,5(8):1479.
46 Lee S M, Kwong A,Jung D, et al. High performance ultrathin gaas solar cells enabled with heterogeneously integrated dielectric periodic nanostructures[J]. ACS Nano, 2015,9(10):10356.
[1] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[2] 王琦胜, 何发旺, 刘振国, 王经伟, 李红玉. 不同聚酯二元醇合成聚氨酯对导电银浆性能的影响[J]. 材料导报, 2024, 38(13): 22110234-6.
[3] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[4] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[5] 陈忠岩, 谢全灵, 于桐, 卢英华, 邵文尧. 基于中间层策略构筑高性能聚酰胺复合膜的研究进展[J]. 材料导报, 2023, 37(21): 22030193-13.
[6] 吴启静, 马洁茹, 刘硕, 王露臻, 周彤, 李大纲, 陈楚楚. 全生物质α-甲壳素纳米纤维柔性透明膜的制备及性能研究[J]. 材料导报, 2023, 37(14): 22010094-6.
[7] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[8] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[9] 王芳, 吴亚东, 琚丹丹, 吴宜勇, 孙承月. 聚对苯撑苯并二噁唑纤维的电子束辐照效应研究[J]. 材料导报, 2022, 36(22): 22050038-5.
[10] 赵磊, 彭元佑, 李媛, 张倩倩, 冉奋. 聚乙二醇分子刷接枝改性碳微球及其电化学性能[J]. 材料导报, 2022, 36(21): 21080112-7.
[11] 黄薇, 李红强, 官航, 冯海洋, 韦业, 古孜努尔·阿巴白克力, 赖学军, 曾幸荣. 天然木材的功能化及其应用进展[J]. 材料导报, 2022, 36(18): 20090093-7.
[12] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[13] 谢丹丹, 张宝荣, 赵晖, 刘君, 宋安康, 朱国本, 马爱珍, 宋文文, 赵海峰. 镍源对催化酚醛树脂原位生成碳纳米管的影响[J]. 材料导报, 2021, 35(z2): 46-49.
[14] 义水灵, 熊向源. 转铁蛋白在纳米靶向药物递送体系的应用[J]. 材料导报, 2021, 35(z2): 501-507.
[15] 李文娟, 廖璇, 熊向源, 龚妍春, 李资玲. Pluronic修饰脂质体的研究进展[J]. 材料导报, 2021, 35(z2): 612-615.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed