Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3738-3743    https://doi.org/10.11896/cldb.18120197
  无机非金属及其复合材料 |
基于CFD模拟的新拌混凝土泵送压力损失预测
魏子易1,安晓鹏1,史才军2,,武斌1,元强3
1 中国建筑材料研究总院绿色建材国家重点实验室,北京 100024
2 湖南大学土木工程学院绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
3 中南大学土木工程学院高速铁路建造技术国家工程实验室,长沙 410075
Pressure Loss Prediction of Fresh Concrete Pumping Based on CFD Simulation
WEI Ziyi1, AN Xiaopeng1, SHI Caijun2, WU Bin1, YUAN Qiang3
1 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024
2 Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082
3 National Engineering Laboratory for High Speed Railway Construction, School of Civil Engineering, Central South University, Changsha 410075
下载:  全 文 ( PDF ) ( 2456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土泵送技术在土木工程中的应用越来越普遍,但是泵送压力的预测长期缺乏有效的技术手段,工程应用中依赖大型盘管实验,消耗大量人力物力。本工作通过计算流体动力学(CFD)模拟研究了混凝土流变参数对混凝土泵送压力损失的影响,并将模拟结果与实验值进行对比,结果表明,SST·k-ω湍流模型能够针对混凝土材料的特性,准确预测混凝土泵送压力损失,粘度是影响泵压损失的主要因素,单位长度的泵压损失与粘度成正比,粘度越大,混凝土由于剪切作用受到的阻力越大,导致泵压损失增大;泵压损失随着屈服应力的增大而减小,且在混凝土屈服应力小于150 Pa时,随着屈服应力的增大,泵压损失降低程度更显著,当屈服应力大于150 Pa时,屈服应力对泵压损失的影响不明显。此外,研究了混凝土流变参数对泵压损失的影响机理,结果表明,混凝土流变参数是影响泵压损失的主要因素,新拌混凝土屈服应力增大,则泵管中剪切层的厚度减小,从而降低泵管中单位长度的泵压损失;新拌混凝土粘度增大,则泵管中由于剪切作用造成的阻力增大,进而增大泵管中单位长度的泵压损失。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏子易
安晓鹏
史才军
武斌
元强
关键词:  混凝土泵送  泵压损失  流动形式  计算流体动力学(CFD)模拟    
Abstract: Concrete pumping technology is becoming more and more popular in civil engineering. But the prediction of pumping pressure loss lacks effective technical methods for a long time, it relies on large coil experiments which consume a lot in engineering applications. In this paper, the influence of rheological parameters on the pressure loss of concrete pumping is studied by computational fluid dynamics (CFD) simulation, and take the experimental results as a comparison. The results showed that the SST·k-ω turbulence model can accurately predict the concrete pumping pressure loss. Viscosity is the main factor affecting pump pressure loss. The pumping loss per unit length is proportional to the viscosity. The higher the viscosity, the greater the resistance of concrete due to shearing increases with the increase of viscosity, the pressure loss increases. The pressure loss decreases with the increase of the yield stress, and when the concrete yield stress is less than 150 Pa, the pressure loss decreases more significantly as the yield stress increases. When the stress is greater than 150 Pa, the effect of yield stress on pumping loss is not obvious. The simulation method proposed in this paper could effectively determine the pumping pressure loss. In addition, the influence mechanism of rheological parameters on pumping pressure loss was studied. The results show that the rheological parameters of concrete are the main factors influencing the pressure loss. When the yield stress of fresh concrete increases, the thickness of the shear layer in the pump tube decreases, thus reducing the pressure loss per unit length in the pump tube. As the viscosity of the concrete increases, the resistance due to shearing in the pump tube increases, thereby increasing the pumping loss per unit length in the pump tube.
Key words:  concrete pumping    pressure loss    velocity profile    computational fluid dynamics (CFD) simulation
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TU528  
基金资助: 十三五国家重点研发计划项目 (2017YFB0310100);国家自然科学基金(51502279)
作者简介:  魏子易,中国建筑材料科学研究总院硕士研究生,本科毕业于同济大学,申请国家发明专利2项,
史才军教授,国家第二批“千人计划”特聘专家、湖南省特聘专家、亚洲混凝土联合会副主席、湖南大学985工程创新平台首席科学家、特聘教授、博士研究生导师,中国建筑材料科学研究总院特聘教授、博士研究生导师,Taylor and Francis 学术期刊Journal of Sustainable Cement-based Materials创刊主编, 中国硅酸盐学会会刊《硅酸盐学报》副主编,Elsevier著名学术期刊Cement and Concrete Research,Cement and Concrete Compo-sites,Construction and Building Materials,Taylor&Francis学术期刊Journal of Structural Integrity and Maintenance,西班牙Materiales de Construccion,《材料导报》《建筑材料学报》《重庆交通大学学报》《中国水泥》等期刊编委;美国土木工程学会会刊Journal of Materials in Civil Engineering前副主编。国际上50多种著名学术期刊审稿人,中国硅酸盐学会理事,美国混凝土学会 (ACI)、美国材料与试验学会 (ASTM)、加拿大标准协会(CSA)及国际材料与结构联合会(RILEM)中多个专业委员会的会员、加拿大安大略省注册职业工程师。史才军教授在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面做了广泛深入的研究工作,发表高水平学术论文300余篇。出版英文著作6部,中文著作3部,合编国际会议英文论文集6本,组织和主持了8个国际学术会议和3次专题研讨会及3个全国性会议,在国际学术会议应邀担任专家委员会委员或分会主席100多次、大会主题报告50多次,并应邀到世界各地100多所大学和公司做学术报告和专题讲座;2014年获湖南省“潇湘友谊”奖。2015—2017年“建设与建造”领域中国高被引学者,2016年全球土木工程领域高被引学者,2001、2007和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士(Fellow)。
引用本文:    
魏子易,安晓鹏,史才军,武斌,元强. 基于CFD模拟的新拌混凝土泵送压力损失预测[J]. 材料导报, 2019, 33(22): 3738-3743.
WEI Ziyi, AN Xiaopeng, SHI Caijun, WU Bin, YUAN Qiang. Pressure Loss Prediction of Fresh Concrete Pumping Based on CFD Simulation. Materials Reports, 2019, 33(22): 3738-3743.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120197  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3738
[1] Li L M, Chen X W, Zhang L, et al. Architecture Technology, 2016, 47(4), 3(in Chinese).李路明, 陈喜旺, 张莉,等. 建筑技术, 2016, 47(4),3.
[2] Roger D B,Phillip B B. ACI Structural Journal, 1977, 74(5),193.
[3] Ede A N. Magazine of Concrete Research, 1957, 9(27),129.
[4] Weber R. The transport of concrete by pipeline, Cement and Concrete Association, London, 1968.
[5] Morinaga S. In: Proceeding of a RILEM Seminar Held. Leeds, 1973, pp.1.
[6] Aleekseev S N. Mekhanizatsiya Stroitel’stva, 1952, 9(1), 8.
[7] Kaplan D, De Larrard F, Sedran T. ACI Materials Journal, 2005, 102(2), 110.
[8] Feys D, Khayat K H, Khatib R. Cement and Concrete Composites, 2016, 66, 38.
[9] Ngo T T, Kadri E H, Cussigh F, et al. Canadian Journal of Civil Engineering, 2011, 38(8), 944.
[10] Kaplan D. Pumping of concretes. Ph.D. Thesis, Laboratoire Central des Ponts et Chausées, Paris, 2001.
[11] Kwon S H, Park C K, Jeong J H, et al. ACI Materials Journal, 2013, 110(6), 657.
[12] Kwon S, Jang K, Kim J H, et al. International Journal of Concrete Structures and Materials, 2016, 10(3), 75.
[13] Choi M S, Kim Y J, Jang K P, et al. Construction and Building Mate-rial, 2014, 66, 723.
[14] Le H D, De Schutter G, Kadri E H, et al. In: 3rd International Confe-rence on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR-2012). Cape Town, South Africa, 2012, pp. 1382.
[15] Choi M, Roussel N, Kim Y, et al. Cement and Concrete Research, 2013, 45, 69.
[16] Bannwart A C, Rodriguez O M H, de Carvalho C H M, et al. Journal of Energy Resources Technology, 2004, 126(3), 184.
[17] Liu L, Fang Z, Qi C, et al. Powder Technology, 2019, 343, 454.
[18] Abdulrahman M W. Applied Thermal Engineering, 2016, 99, 224.
[19] Parsi M, Kara M, Agrawal M, et al. Wear, 2017, 376, 1176.
[20] Javaheri V, Porter D, Kuokkala V. Wear, DOI: 10.1016/j.wear.2018.05.010.
[21] Jacobs B E A. Design of slurry transport systems, CRC Press, London, UK, 1991.
[22] Lo S, Tomasello A. In:7th North American Conference on Multiphase Technology. Banff, Canada,2010.
[23] Menter F R. American Institute of Aeronautics and Astronautics, 1992, 30(6), 1657.
[24] Menter F R. AIAA Journal, 1994,32(8), 1598.
[25] Wilcox D C. Turbulence modeling for CFD, DCW Industries, La Canada, CA, 1998.
[26] Choi M S, Kim Y J, Kwon S H. Cement and Concrete Research, 2013, 52, 216.
[27] Zhao M, Li Y G, Zhang X L. Fly Ash Comprehensive Utilization, 2015(5), 11(in Chinese).赵明, 李仰根, 张晓乐. 粉煤灰综合利用, 2015(5), 11.
[1] 王茹,万芹,王高勇. 纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响[J]. 材料导报, 2019, 33(22): 3712-3719.
[2] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[3] 李保亮,王月华,潘东,杨亮,张亚梅. 电弧炉镍铁渣砂和镍铁渣粉的组成特性与适用性分析[J]. 材料导报, 2019, 33(22): 3752-3756.
[4] 高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21): 3620-3629.
[5] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[6] 王家滨, 牛荻涛. 盐湖卤水侵蚀喷射混凝土衬砌损伤演化[J]. 材料导报, 2019, 33(20): 3426-3435.
[7] 李荣涛, Christopher Y. TUAN. 考虑热湿影响的氯盐侵蚀下混凝土中多相传输与相变模拟[J]. 材料导报, 2019, 33(18): 3043-3049.
[8] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[9] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[10] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[11] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[12] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[13] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[14] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[15] 周薛霞,杨赞中,徐艳娇,王路,孙海滨,王永在,杜庆洋,乐红志. 轻质多孔混凝土防水剂的研究进展[J]. 材料导报, 2019, 33(15): 2546-2551.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed