Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21070090-11    https://doi.org/10.11896/cldb.21070090
  无机非金属及其复合材料 |
纳米材料在病毒检测中的应用研究进展
李佳炜, 朱宏伟*
清华大学材料学院,新型陶瓷与精细工艺国家重点实验室,北京 100084
A Review on the Application of Nanomaterials in Virus Detection
LI Jiawei, ZHU Hongwei*
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 11170KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 病毒的快速、灵敏和特异性检测是医学领域备受关注的关键问题。自2020年以来,新型冠状病毒肺炎疫情在全球范围内的爆发对快捷灵敏的病毒检测方法提出了更高要求。随着新材料尤其是纳米材料的不断发展,很多材料显示出优异的物理、化学与力学性能,在病毒检测中展现出应用潜力。纳米材料从结构上可分为零维材料、一维材料与二维材料。本文从病毒检测基本方法入手,围绕纳米材料的分类,结合纳米材料的最新进展,综述了各类纳米材料在病毒探测领域的应用,对其未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李佳炜
朱宏伟
关键词:  纳米材料  病毒检测  生物传感器  化学传感器    
Abstract: Rapid, sensitive and specific detection of viruses is a key issue in the medical field. Since 2020, the global outbreak of COVID-19 requires more sensitive virus detection methods. With the development of new materials, especially nanomaterials, many materials have demonstrated great physical, chemical and mechanical properties, which present potential for virus detection. Nanomaterials can be divided into zero-dimensional materials, one-dimensional materials and two-dimensional materials by structure. In this paper, the classification and the latest progress of nanomaterials are reviewed, highlighting their applications in the field of virus detection. The future prospect of nanomaterials in virus detection is also presented and discussed.
Key words:  nanomaterial    virus detection    biosensor    chemical sensor
发布日期:  2023-03-27
ZTFLH:  TB34  
通讯作者:  *朱宏伟,教授。1998年、2003年分别获清华大学学士和博士学位。先后在日本和美国从事博士后研究,2008年回清华大学任教至今。主要从事以低维材料多维多尺度可控合成及其应用基础研究。出版《石墨烯》《碳纳米管》等专著8部,授权发明专利30余项,发表论文300余篇。hongweizhu@tsinghua.edu.cn   
作者简介:  李佳炜,2021年6月毕业于清华大学,获得工学学士学位。现为清华大学材料学院博士研究生。主要研究领域为二维材料及其神经形态应用。
引用本文:    
李佳炜, 朱宏伟. 纳米材料在病毒检测中的应用研究进展[J]. 材料导报, 2023, 37(6): 21070090-11.
LI Jiawei, ZHU Hongwei. A Review on the Application of Nanomaterials in Virus Detection. Materials Reports, 2023, 37(6): 21070090-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070090  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21070090
1 Lecoq H. Comptes Rendus de l Académie des Sciences-Series III-Sciences de la Vie, 2001, 324, 929.
2 Alvarez M M, Aizenberg J, Analoui M, et al. ACS Nano, 2017, 11, 5195.
3 Malik A A, Nantasenamat C, Piacham T. Materials Science & Engineering C-Materials for Biological Applications, 2017, 77, 1341.
4 Hotez P J. Microbes and Infection, 2015, 17, 539.
5 Smith R D. Social Science & Medicine, 2006, 63, 3113.
6 Chan Y K, Gack M U. Nature Reviews Microbiology, 2016, 14, 360.
7 Zhou P, Yang X L, Wang X G, et al. Nature, 2020, 579, 270.
8 Payungporn S, Chutinimitkul S, Chaisingh A, et al. Journal of Virological Methods, 2006, 131, 143.
9 Tsang M K, Ye W, Wang G, et al. ACS Nano, 2016, 10, 598.
10 Navakul K, Warakulwit C, Yenchitsomanus P T, et al. Nanomedicine, 2017, 13, 549.
11 Wong C L, Chua M, Mittman H, et al. Sensors, 2017, 17, 2363.
12 Stephenson J R, Warnes A. Diagnostic virology protocols, Humana Press Inc., USA, 2011.
13 Leland D S, Ginocchio C C. Clinical Microbiology Reviews, 2007, 20, 49.
14 Hsiung G D. Yale Journal of Biology and Medicine, 1984, 57, 727.
15 Storch G A. Clinical Infectious Diseases, 2000, 31, 739.
16 Greer S, Alexander G J. Baillieres Clinical Gastroenterology, 1995, 9, 689.
17 Clark M F, Adams A N. Journal of General Virology, 1977, 34, 475.
18 Zeng S W, Yong K T, Roy I, et al. Plasmonics, 2011, 6, 491.
19 Malecka K, Stachyra A, Góra-Sochacka A, et al. Sensors and Actuators B: Chemical, 2016, 224, 290.
20 Meng J, Doyle M P. Microbes and Infection, 2002, 4, 395.
21 Walsh J H, Yalow R S, Berson S A. Vox Sanguinis, 1970, 19, 217.
22 Bustin S A, Mueller R. Clinical Science, 2005, 109, 365.
23 Clark L C, Lyons C. Annals of the New York Academy of Sciences, 1963, 102, 29.
24 Goode J A, Rushworth J V, Millner P A. Langmuir, 2015, 31, 6267.
25 Verma N, Bhardwaj A. Applied Biochemistry and Biotechnology, 2015, 175, 3093.
26 Saylan Y, Yilmaz F, Ozgur E, et al. Sensors (Basel), 2017, 17,
27 Zehbe I, Hacker G W, Su H, et al. American Journal of Pathology, 1997, 150, 1553.
28 Draz M S, Shafiee H. Theranostics, 2018, 8, 1985.
29 Jang K J, Lee H, Jin H L, et al. Small, 2009, 5, 2665.
30 Jorquera P A, Tripp R A. Vaccines, 2016, 4, 45.
31 Lu X C, Dong X, Zhang K Y, et al. Analyst, 2013, 138, 642.
32 Li H, Rothberg L. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14036.
33 Baek T J, Park P Y, Han K N, et al. Analytical and Bioanalytical Chemistry, 2008, 390, 1373.
34 Dong H, Liu J, Zhu H, et al. Virology Journal, 2012, 9, 180.
35 Nikbakht H, Gill P, Tabarraei A, et al. RSC Advances, 2014, 4, 13575.
36 Wu J C, Chen C H, Fu J W, et al. Sensors, 2014, 14, 4399.
37 Zengin A, Tamer U, Caykara T. Journal of Raman Spectroscopy, 2017, 48, 668.
38 Baptista P, Pereira E, Eaton P, et al. Analytical and Bioanalytical Chemistry, 2008, 391, 943.
39 Li X, Scida K, Crooks R M. Analytical Chemistry, 2015, 87, 9009.
40 Ge L, Sun X, Hong Q, et al. ACS Applied Materials & Interfaces, 2017, 9, 13102.
41 Mao X, Liu S, Yang C, et al. Analytica Chimica Acta, 2016, 909, 101.
42 Yamagishi Y, Watari A, Hayata Y, et al. Nanoscale Research Letters, 2013, 8, 395.
43 Devadhasan J P, Kim S. Journal of Nanoscience and Nanotechnology, 2015, 15, 85.
44 van Doremalen N, Bushmaker T, Morris D H, et al. The New England Journal of Medicine, 2020, 382, 1564.
45 Zhu H T, Wang J X, Xu G Y. Crystal Growth & Design, 2009, 9, 633.
46 Duan D, Fan K, Zhang D, et al. Biosensors & Bioelectronics, 2015, 74, 134.
47 Xi Z, Huang R, Li Z, et al. ACS Applied Materials & Interfaces, 2015, 7, 11215.
48 Edeas M, Saleh J, Peyssonnaux C. International Journal of Infectious Diseases, 2020, 97, 303.
49 Wang X, Lou X, Wang Y, et al. Biosensors & Bioelectronics, 2010, 25, 1934.
50 Loczechin A, Seron K, Barras A, et al. ACS Applied Materials & Interfaces, 2019, 11, 42964.
51 Zhang G J, Ning Y. Analytica Chimica Acta, 2012, 749, 1.
52 Tran T L, Nguyen T T, Tran T T H, et al. Physica E-Low-Dimensional Systems & Nanostructures, 2017, 93, 83.
53 Lee J, Morita M, Takemura K, et al. Biosensors & Bioelectronics, 2018, 102, 425.
54 Palomar Q, Xu X, Gondran C, et al. Mikrochim Acta, 2020, 187, 363.
55 Yeh Y T, Gulino K, Zhang Y, et al. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 895.
56 Zhang G J, Zhang L, Huang M J, et al. Sensors and Actuators B-Chemical, 2010, 146, 138.
57 Shen F, Wang J, Xu Z, et al. Nano Letters, 2012, 12, 3722.
58 Gao A, Yang X, Tong J, et al. Biosensors & Bioelectronics, 2017, 91, 482.
59 Inci F, Tokel O, Wang S, et al. ACS Nano, 2013, 7, 4733.
60 Ibarlucea B, Fawzul A T, Kim K, et al. Nano Research, 2017, 11, 1057.
61 Shariati M, Sadeghi M. Analytical and Bioanalytical Chemistry, 2020, 412, 5367.
62 Bo Y, Yang H Y, Hu Y, et al. Electrochimica Acta, 2011, 56, 2676.
63 Xue Q, Kan X, Pan Z, et al. Biosensors & Bioelectronics, 2021, 186, 113286.
64 Shukla S K, Mishra A K, Arotiba O A, et al. International Journal of Biological Macromolecules, 2013, 59, 46.
65 Suginta W, Khunkaewla P, Schulte A. Chemical Reviews, 2013, 113, 5458.
66 Carter D C, Wright B, Jerome W G, et al. Journal of Nanomaterials, 2020, 2020, 4297937.
67 Wang Q X, Zhang B, Lin X Q, et al. Sensors and Actuators B-Chemical, 2011, 156, 599.
68 Charych D, Spevak W R, Nagy J O, et al. Materials Research Society, 1992, 292, 153.
69 Su Y L, Li J R, Jiang L. Colloids and Surfaces B-Biointerfaces, 2004, 38, 29.
70 Lee S W, Kang C D, Yang D H, et al. Advanced Functional Materials, 2007, 17, 2038.
71 Jung S H, Jang H, Lim M C, et al. Analytical Chemistry, 2015, 87, 2072.
72 Tu Z, Guday G, Adeli M, et al. Advanced Materials, 2018, 30, e1706709.
73 Novoselov K S, Jiang D, Schedin F, et al. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10451.
74 Novoselov K S, Geim A K, Morozov S V, et al. Nature, 2005, 438, 197.
75 Palmieri V, Papi M. Nano Today, 2020, 33, 100883.
76 Afsahi S, Lerner M B, Goldstein J M, et al. Biosensors & Bioelectronics, 2018, 100, 85.
77 Islam S, Shukla S, Bajpai V K, et al. Biosensors & Bioelectronics, 2019, 126, 792.
78 Seo G, Lee G, Kim M J, et al. ACS Nano, 2020, 14, 5135.
79 Zhang J A, Tian J L, Zhang Q W, et al. Journal of Chongqing University of Technology(Natural Science), 2022, 36(4), 111(in Chinese).
张俊安, 田江玲, 张庆伟, 等. 重庆理工大学学报(自然科学), 2022, 36(4), 111.
80 Gao A, Liang H, Shen Q, et al. Nano Biomedicine and Engineering, 2020, 12, 321.
81 Fadeel B, Bussy C, Merino S, et al. ACS Nano, 2018, 12, 10582.
82 Jiao T, Liu Y, Wu Y, et al. Scientific Reports, 2015, 5, 12451.
83 Kim S, Ryoo S R, Na H K, et al. Chemical Communications, 2013, 49, 8241.
84 Chen L, Song L, Zhang Y, et al. ACS Applied Materials & Interfaces, 2016, 8, 11255.
85 Zhang C X, Lv X F, Zhang Z G, et al. Analytical Letters, 2015, 48, 2423.
86 Sivasankarapillai V S, Pillai A M, Rahdar A, et al. Nanomaterials, 2020, 10, 852.
87 Chen Y, Wang L Z, Shi J L. Nano Today, 2016, 11, 292.
88 Kurapati R, Kostarelos K, Prato M, et al. Advanced Materials, 2016, 28, 6052.
89 Rashkow J T, Talukdar Y, Lalwani G, et al. ACS Biomaterials Science & Engineering, 2017, 3, 2533.
90 Zhu C, Zeng Z, Li H, et al. Journal of the American Chemical Society, 2013, 135, 5998.
91 Wang Q, Wang W, Lei J, et al. Analytical Chemistry, 2013, 85, 12182.
92 Fathi-Hafshejani P, Azam N, Wang L, et al. ACS Nano, 2021, 15, 11461.
93 Russell S, Norvig P. Applied Mechanics & Materials, 1995, 263, 2829.
94 Collobert R, Weston J, Bottou L, et al. Journal of Machine Learning Research, 2011, 12, 2493.
95 Mitchell T M. Machine learning, China Machine Press, China, 2003.
96 Salt D W, Yildiz N, Livingstone D J, et al. Pesticide Science, 1992, 36, 161.
97 Chen H, Engkvist O, Wang Y, et al. Drug Discovery Today, 2018, 23, 1241.
98 Abramoff M D, Lavin P T, Birch M, et al. NPJ Digital Medicine, 2018, 1, 39.
99 Ito E, Sato T, Sano D, et al. Food and Environmental Virology, 2018, 10, 201.
100 Griffel L M, Delparte D, Edwards J. Computers and Electronics in Agriculture, 2018, 153, 318.
101 Loey M, Smarandache F, Khalifa N E M. Symmetry-Basel, 2020, 12, 651.
102 Togacar M, Ergen B, Comert Z. Computers in Biology and Medicine, 2020, 121, 103805.
[1] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[2] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[3] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[4] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[5] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[6] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[7] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[8] 刘志伟, 童朝阳, 杜斌, 汪将, 刘帅. 四面体DNA核酸适体生物传感器构建方法及应用[J]. 材料导报, 2022, 36(24): 21050199-6.
[9] 陈龙, 刘兆利, 杨旭东, 张偌涵, 孙玮良, 刘文. 纳米材料光催化灭活新型冠状病毒SARS-CoV-2研究进展与启示[J]. 材料导报, 2022, 36(20): 22100084-12.
[10] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[11] 王琼, 张伊, 唐浩, 胡云楚, 王文磊. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20090134-8.
[12] 陈达, 刘美含, 张伟, 练美玲. 具有类过氧化物酶活性的纳米材料在比色分析中的研究进展[J]. 材料导报, 2022, 36(13): 20090055-14.
[13] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[14] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[15] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed