Abstract: The geological storage of CO2 is a key technology for reducing CO2 emissions, and the cementing material resistant to supercritical CO2 corrosion is a prerequisite for long-term CO2 storage. The oil well cement (OWC) currently used cannot guarantee the long-term effectiveness of CO2 storage due to its intrinsically high alkalinity. Calcium aluminate phosphate cement (CAPC) has strong carbonation resistance, but its corrosion resistance under supercritical CO2 is not clear. This work disclosed the changes in performance of CAPC and OWC under supercritical CO2. The results of compressive strength, permeability, and carbonization depth tests showed that the compressive strength of CAPC increased within 90 d, while the permeability did not significantly increase, and the carbonization depth was less than 0.05 mm. After 7 d of exposure to supercritical CO2, OWC began to experience a decrease in compressive strength and an increase in permeability. At 90 d of exposure, the carbonization depth of OWC reached 1.10 mm, which is more than 20 times that of CAPC. These findings indicate that CAPC is an ideal cementing material for CO2 storage wells.
通讯作者:
* 张朝阳,清华大学土木工程系博士后。2016年7月、2022年1月于清华大学土木工程系土木工程专业分别获得工学学士学位和工学博士学位。目前主要从事水泥基材料外加剂、力学性能、耐久性等方面的研究工作。发表论文20余篇,包括Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Materials、《硅酸盐学报》等。 2223838237@qq.com
1 Chen J. Investigation of carbonation degradation of oil well cement for CCUS geological sequestration. Master’s Thesis, China University of Petroleum, 2020 (in Chinese). 陈杰. CCUS地质封存中CO2对油井水泥碳化腐蚀研究. 硕士学位论文, 中国石油大学, 2020. 2 Liu M X, Liang X, Lin Q G, et al. Proceedings of the CSEE, 2021, 41(14), 4731 (in Chinese). 刘牧心, 梁希, 林千果, 等.中国电机工程学报, 2021, 41(14), 4731. 3 IPCC. Summary for policymakers, Cambridge University Press, UK, 2018. 4 IPCC. Carbon dioxide capture and storage, Cambridge University Press, UK, 2005. 5 Hedenquest J W, Stewart M K. In: Geothermal resources council, international symposium energy. Hawaii, 1985. 6 Milestone N B, Kukacka L E, Carciello N. Geothermal Resources Council, Transactions, 1986, 10, 75. 7 Milestone N B, Sugama T, Kukacka L E, Carciello N. Cement and Concrete Research, 1986, 16, 941. 8 Milestone N B, Sugama T, Kukacka L E, Carciello N. Cement and Concrete Research, 1987, 17, 37. 9 Zhang B H, Zhang Q, Geng C X, et al. Guangzhou Chemical Industry, 2016, 44(7), 156 (in Chinese). 张丙华, 张倩, 耿春香, 等. 广州化工, 2016, 44(7), 156. 10 Liu S N, Zhang L W, Gan M G, et al. Proceedings of the CSEE, 2022, 42(9), 3126 (in Chinese). 刘思楠, 张力为, 甘满光, 等. 中国电机工程学报, 2022, 42(9), 3126. 11 Sugama T, Carciello N R. Journal of the American Ceramic Society, 1991, 74(5), 1023. 12 Sugama T. Cement and Concrete Research, 1996, 26, 1661. 13 Sugama T, Weber L, Brothers L E. Materials Letters, 2000, 44, 45. 14 Liu G Z, Hu G V, Shi X Z, et al. Journal of Petroleum Science and Engineering, 2021, 203, 108608. 15 Song J J, Xu M B, Zhou J, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(8), 2656 (in Chinese). 宋建建, 许明标, 周俊, 等. 硅酸盐通报, 2018, 37(8), 2656. 16 Zhang C, Wang L, Yao Y, et al. Materials Reports, 2023, 37(8), 21080026 (in Chinese). 张铖, 王玲, 姚燕, 等. 材料导报, 2023, 37(8), 21080026.