Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1517-1525    https://doi.org/10.11896/cldb.18040267
  无机非金属及其复合材料 |
综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟
王泳丹1, 刘子铭2, 郝培文1
1 长安大学公路学院,西安 710064
2 东南大学交通学院,南京 210096
Self-healing Behavior of Fatigue Damage in Asphalt Binders:Theoretical Studies, Evaluation Approaches, Influencing Factors, Numerical Simulation
WANG Yongdan1, LIU Ziming2, HAO Peiwen1
1 School of Highway, Chang’an University, Xi’an 710064
2 School of Transportation, Southeast University, Nanjing 210096
下载:  全 文 ( PDF ) ( 2008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青混凝土是常见的筑路材料之一,沥青路面以其行车舒适、低噪声、耐磨耗等优势被广泛应用于我国高等级公路。在车辆荷载及环境温度的反复作用下,沥青路面易产生疲劳损伤,若未及时察觉,疲劳损伤会不断累积汇集产生裂缝,降低路面的使用寿命,危及行车安全。与此同时,研究者通过试验发现,在一定条件下,沥青混凝土具有强度恢复及裂缝自修复能力,这种自愈合能力与胶结料沥青有较大关系。
因此,为延长沥青路面使用寿命,降低运营过程中的养护成本,沥青的自愈合特性成为近年来国内外研究的热点问题。研究者结合室内试验与现代物相技术,提出基于力学、能量角度的沥青疲劳损伤自愈合评价指标,研究了沥青化学组成、改性剂、外界环境及加载方式等因素的影响,并试图借助宏观、微观理论解释沥青疲劳损伤愈合的过程。目前,关于沥青疲劳损伤愈合的评价方法、评价指标的有效性及理论模型的适用性尚未有定论,仍需进一步探索。
基于上述问题,研究者对沥青疲劳损伤自愈合行为及相关理论开展进一步研究。研究结果表明,宏微观力学、分子扩散等理论可从一定程度上解释沥青疲劳损伤强度恢复行为和微观界面愈合行为。将沥青剪切、断裂试验和现代物相技术等作为研究方法,采用力学、能量等指标可从不同角度对沥青的自愈特性进行评价。同时采用疲劳损伤愈合行为方程及分子动力学模拟作为愈合过程数值模拟,将基本理论方程与分子尺度模拟结合,对沥青宏观及微观愈合行为进行数值表征,研究结果为其演化机制及特性描述提供参考。
本文参考国内外研究成果,综述了沥青疲劳损伤自愈合特性的研究现状,其中包括沥青自愈合行为理论、沥青疲劳损伤自愈合能力评价方法及指标、沥青疲劳损伤自愈合特性影响因素、沥青疲劳损伤自愈合行为数值表征,最后展望了其未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王泳丹
刘子铭
郝培文
关键词:  沥青自愈合  疲劳损伤  行为理论  评价方法  影响因素  数值模拟    
Abstract: Asphalt concrete is one of the most common road construction materials. Asphalt pavement is widely used in high-grade highways in China due to its advantages of driving comfort, low noise and wear resistance. Under the repeated action of vehicle load and ambient temperature, asphalt pavement is prone to fatigue damage. If it is not detected in time, accumulated fatigue damage will result in cracks, which reduces pavement service life and endangers driving safety. Meanwhile, it has been found that asphalt concrete is capable of self-healing in terms of strength and cracks under certain conditions. This self-healing ability is likely to derived from asphalt binder.
Aiming at prolonging the service life of asphalt pavement and reduce the maintenance cost during operation, great efforts have been put in the study on self-healing characteristic of asphalt materials in recent years. Taking the combined indoor laboratory test and physical phase technology as research methods, the self-healing evaluation index of asphalt fatigue damage based on mechanics and energy is proposed, the impacts of chemical composition, modifier, external environment and loading method of asphalt are studied, and attempts have been made to explain the process of fatigue damage healing of asphalt by means of macroscopic and microscopic theoretical perspectives. Presently, the applicability of the evaluation method and evaluation index of fatigue damage healing of asphalt has not yet been demonstrated and needs to be further explored.
Based on the above problems, further researches on the self-healing behavior of fatigue damage in asphalt have been carried out. Results show that macro-micro mechanics, molecular diffusion and other theories can explain the fatigue damage recovery behavior and micro-interface healing behavior of asphalt to some extent. Taking shearing, fracture test, phase technology of asphalt as research methods, the self-healing behavior of asphalt can be evaluated from different angles by employing the mechanical and energy indicators. Meanwhile, fatigue damage behavior equation and molecular dynamics simulation have been applied to simulate the healing process of asphalt. Combining the theoretical equations with molecular-scale simulation, the macroscopic and microscopic self-healing behavior of asphalt can be numerically characterized. These research results would contribute to the study of its evolution mechanism and characteristic description.
Referring to the domestic and foreign research results, we review the progress in the self-healing behavior of fatigue-damage of asphalt bin-ders, including asphalt self-healing theory, evaluation methods and indexes, influencing factors, numerical simulation, as well as point out its future research direction.
Key words:  asphalt self-healing    fatigue damage    behavior theory    evaluation method    affecting factors    numerical simulation
                    发布日期:  2019-05-08
ZTFLH:  U414.416  
基金资助: 国家自然科学基金(51478046);河北省太行山等高速公路项目包(一)科研课题项目KT9
通讯作者:  pwhao@chd.edu.cn   
作者简介:  王泳丹,2015年毕业于长安大学,获得工学学士学位。现为长安大学公路学院博士研究生,在郝培文教授的指导下进行研究。目前主要研究领域为沥青材料的自愈合行为特性与增强技术。郝培文,长安大学公路学院教授、博士研究生导师,享受国务院政府特殊津贴。1996年7月毕业于西安公路交通大学(现长安大学),获工学博士学位。2002—2004年获日本学术振兴会(JSPS)资助在日本国土交通省国土技术政策综合研究所做博士后研究。近年来共承担参加科研项目五十余项,其中包括“八五”国家科技攻关项目一项、国家自然科学基金项目五项等。获省部级科技进步奖20多项,其中《沥青及沥青混合料路用性能研究》获国家科技进步二等奖。在国内外学术期刊上发表论文200余篇,拥有国家发明专利40余项。其团队主要研究方向包括:路面材料与结构,沥青与改性沥青技术,机场路面材料与施工技术,新型建筑材料,路面再生利用技术,路基工程等。
引用本文:    
王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
WANG Yongdan, LIU Ziming, HAO Peiwen. Self-healing Behavior of Fatigue Damage in Asphalt Binders:Theoretical Studies, Evaluation Approaches, Influencing Factors, Numerical Simulation. Materials Reports, 2019, 33(9): 1517-1525.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040267  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1517
1 Huang X M, Gao Y, et al. Principle and method of pavement design, Communications Press, China,2015 (in Chinese).
黄晓明,高英,等.路面设计原理与方法,人民交通出版社,2015.
2 Cao L H, Sun D Q, Pang G, et al. Petroleum Asphalt,2012,26(4),1(in Chinese).
曹林辉,孙大权,庞果,等.石油沥青,2012,26(4),1.
3 Deacon J A. Fatigue of asphalt concrete. Ph.D. Thesis, University of California, Berkeley, USA,1965.
4 Ding P, Ji Z Z, Xu B, et al. Journal of Chongqing University of Techno-logy (Natural Science),2018,32(4),127(in Chinese).
丁鹏,吉泽中,徐波,等.重庆理工大学学报(自然科学),2018,32(4),127.
5 Kim Y R, Whitmoyer S L,Little D N. In: Transportation Research Record,Washington,1994,pp.89.
6 De La Roche C, Marsac P. In: 1st Eurasphalt and Eurobitume Congress, Strasbourg, France,2000.
7 Hassan Baaj, Hervé Di Benedetto, Pierre Chaverot. Road Materials and Pavement Design,2005,6(2),28.
8 Benedetto H D, Roche C D L, Baaj H, et al. Materials & Structures,2004,37(3),202.
9 Huang P, Guo D. Mechanics of interface, Tsinghua University Press, China,2013(in Chinese).
黄平,郭丹.界面力学,清华大学出版社,2013.
10Huang J M, Huang J. Chinese Journal of Construction Machinery,2014,12(4),299(in Chinese).
黄健萌,黄靖.中国工程机械学报,2014,12(4),299.
11Johnson K L, Greenwood J A. Adhesive contact of elastic bodies: The JKR Theory, Springer, USA,2013.
12Anand J N, Kabam H J. The Journal of Adhesion,1969,1(1),16.
13Anand J N, Balwinski R Z. The Journal of Adhesion,1969,1(1),24.
14Anand J N. The Journal of Adhesion,1969,1(1),31.
15Anand J N, Dipzinski L. The Journal of Adhesion, 1970,2(1),16.
16Anand J N. Journal of Adhesion,1970,2(1),23.
17Schapery R A. International Journal of Fracture,1989,39(1-3),163.
18Bazin P, Saunier J B. In: Interantional Conference on Structure Design Asphalt Pavements, Ann Arbor,1967.
19Karki P, Bhasin A, Underwood B S. Transportation Research Record Journal of the Transportation Research Board,2016,2576,72.
20Kim Y R. Evaluation of healing and constitutive modeling of asphalt concrete by means of the theory of nonlinear viscoelasticity and damage mechanics. Ph.D. Thesis, Texas A & M University, USA,1988.
21Lee H J, Kim Y R. Journal of Engineering Mechanics,1998,124(11),1224.
22Shan Liyan. Fatigue and rheology mechanism of asphalt binder based on viscoelastic characteristic. Ph.D. Thesis, Harbin Institute of Technology, China,2010(in Chinese).
单丽岩.基于粘弹特性的沥青疲劳-流变机理研究.博士学位论文,哈尔滨工业大学,2010.
23Lytton R L, Chen C W, Little D N. Microdamage healing in asphalt and asphalt concrete, volume III: A micro-mechanics fracture and healing model for asphalt concrete,Federal Highway Administration, USA,2001.
24Schapery R A. International Journal of Fracture,1984,25(3),195.
25Wool R P, Connor K M O. Journal of Applied Physics,1981,52(10),5953.
26Yuan Y C, Yin T, Rong M Z, et al. Express Polymer Letters,2008,2(4),238.
27Shen J, Harmon J, Lee S. Journal of Materials Research,2002,17(6),1335.
28Little D N, Bhasin A, Darabi M K. Advances in asphalt materials, Woodhead Publishing, UK,2015.
29Kim Y H, Wool R P. Macromolecules,1983,16(7),1115.
30Gennes D P G. Journal of Chemical Physics,1971,55(2),572.
31Prager S, Tirrell M. Journal of Chemical Physics,1981,75(10),5194.
32Sun D, Lin T, Zhu X, et al. Construction & Building Materials,2015,95(1),431.
33Shan L, Tan Y, Kim Y R. Construction & Building Materials,2013,48(11),74.
34Tan Y, Shan L, Kim Y R, et al. Construction & Building Materials,2012,27(1),570.
35Shen S, Lu X. Journal of Materials in Civil Engineering,2014,26(2),275.
36Mazzoni G, Stimilli A, Canestrari F. International Journal of Fatigue,2016,92,8.
37Shen Shihui. Journal of Materials in Civil Engineering,2010,22(9),846.
38Qiu J, Ven M V D, Wu S, et al. Experimental Mechanics,2012,52(8),1163.
39Lv Q, Huang W, Zhu X, et al. Materials & Design,2017,117(12),7.
40Hammoumm F, De La Roche C, Piau J M, et al. In: Ninth International Conference on Asphalt Pavements, Copenhagen,2015,pp.1.
41Sun D, Sun G, Zhu X, et al. Construction & Building Materials,2017,132,230.
42Shen S, Lu X, Liu L, et al. Construction & Building Materials,2016,126,197.
43Shan L, Tian S, He H, et al. Fuel,2016,189,293.
44Sun D, Yu F, Li L, et al. Construction & Building Materials,2017,133(15),495.
45Williams D, Lytton R L, Chen C W, et al. Micro-damage healing in asphalt and asphalt concrete, volumeⅡ: Laboratory and field testing to assess and evaluate micro-damage and micro-damage healing, Federal Highway Administration, USA,2001.
46Mazzoni G, Stimilli A, Cardone F, et al. Construction and Building Materials,2017,131,496.
47Lv Q, Huang W, Xiao F. Construction & Building Materials,2017,136(1),192.
48Tang J, Liu Q, Wu S, et al. Construction & Building Materials,2016,113(15),1029.
49Mannan U A, Ahmad M, Tarefder R A. Construction & Building Mate-rials,2017,146(15),360.
50Bommavaram R R, Bhasin A, Little D N. Journal of the Transportation Research Board,2009,1(2126),47.
51Zhang L, Greenfield M L. Energy & Fuel,2007,21(3),1712.
52Zhang L, Greenfield M L. Journal of Chemical Physics,2007,127(19),194502.
53Bhasin A, Bommavaram R, Greenfield M L, et al. Journal of Materials in Civil Engineering,2011,23(4),485.
54Xin Lu. Investigation of the fracture healing and mechanism of asphalt binders. Ph.D. Thesis, Washington State University, USA,2013.
55Xu G, Wang H. Fuel,2017,188(15),1.
56Ding Yongjie, Huang Baoshan. Fuel,2016,174(15),267.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[7] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[8] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[9] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[10] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[11] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[12] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[13] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[14] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[15] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed