Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22110048-10    https://doi.org/10.11896/cldb.22110048
  高分子与聚合物基复合材料 |
熔体纺丝纤维的磁热性能与磁制冷应用研究进展
张若琛1,*, 钱明芳2, 张学习2
1 沈阳理工大学材料科学与工程学院,沈阳 110159
2 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
Research Progress on the Magnetocaloric Effect and Magnetic Refrigeration Applications of Melt-extraction-prepared Microwires
ZHANG Ruochen1,*, QIAN Mingfang2, ZHANG Xuexi2
1 School of Material Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2 School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 20198KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文对熔体纺丝合金纤维的磁热性能和磁制冷应用的研究进展进行了综述,总结了不同种类具有磁热性能的合金纤维在磁场驱动下能够产生的磁熵变最大值、半高宽和磁制冷能力。概述了熔体纺丝法的基本原理和操作过程,以及小尺寸纤维形态在实际磁制冷机中的应用优势,并重点介绍了将合金制备成纤维形态能够解决大块合金中存在的相关问题,描述了不同种合金纤维产生磁热效应的原理,阐明了纤维相变特征对制冷温度区间、磁熵变及磁热效应的影响机制,最后总结了合金纤维在活性蓄热器中的制冷功率和性能系数的研究情况,简述了将小尺寸合金纤维大批量应用于实际磁制冷装置以解决该类装置制冷效率低、制冷功率小的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张若琛
钱明芳
张学习
关键词:  熔体纺丝法  纤维  磁熵变  磁热效应  磁制冷    
Abstract: This paper concentrates on the progress of the magnetocaloric effect of alloy microwires prepared by melt-extraction method, and summarizes the maximum magnetic entropy change, full width at half maximum and magnetic refrigeration capacity of different kinds of alloy microwires driven by magnetic field. The basic principle and manipulation process of melt-extraction methodincluding the advantages of the small-sized microwire applying in the magnetic refrigerator are stated, with emphasis on the ability of microwire form to solve the problems of bulk alloys. Besides, the principle of magnetocaloric effect production in different microwires are described, and the influencing mechanisms of phase transition character on the full width at half maximum, magnetic entropy change and magnetocaloric effect are clarified. Finally, the research progress on the magnetic power and coefficient of performance in active magnetic regenerator equipped with parallel wires are summarized, and the feasibility of applying large volume of small-sized alloy microwires to practical refrigeration devices aiming at improving refrigeration efficiency and power is briefly discussed.
Key words:  melt-extraction method    microwires    magnetic entropy change    magnetocaloric effect    magnetic refrigeration
发布日期:  2024-06-25
ZTFLH:  TG132.2  
基金资助: 沈阳理工大学高层次人才引进启动项目(1010147001106);辽宁省教育厅高等学校基本科研项目(LJKQZ20222278);辽宁省科技厅博士启动项目(2023-BS-129)
通讯作者:  *张若琛,沈阳理工大学材料科学与工程学院副教授、硕士研究生导师。2014年吉林大学材料科学系金属材料工程专业本科毕业,2016年哈尔滨工业大学材料科学系材料学专业硕士毕业,2021年哈尔滨工业大学材料科学系材料学专业博士毕业后到沈阳理工大学工作至今。目前主要从事铁磁形状记忆合金、磁制冷材料等方面的研究工作。发表SCI论文8篇,包括Journal of Alloys and Compounds、International Journal of Refrigeration、Material Design、Intermetallics等。zhangrc@sylu.edu.cn   
引用本文:    
张若琛, 钱明芳, 张学习. 熔体纺丝纤维的磁热性能与磁制冷应用研究进展[J]. 材料导报, 2024, 38(11): 22110048-10.
ZHANG Ruochen, QIAN Mingfang, ZHANG Xuexi. Research Progress on the Magnetocaloric Effect and Magnetic Refrigeration Applications of Melt-extraction-prepared Microwires. Materials Reports, 2024, 38(11): 22110048-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110048  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22110048
1 Zimm C, Jastrab A, Stemberg A, et al. Description and performance of a near-room temperature magnetic refrigerator, Springer, United States, 1998, pp. 20.
2 Gschneidner K A, Pecharsky V K. International Journal of Refrigeration, 2008, 31, 945.
3 Hai X, Porcher F, Mayer C, et al. Journal of Applied Physics, 2018, 123, 085115.
4 Imam H, Zhang H G, Xu L, et al. 2018, 454, 243.
5 Wang G, Zhao Z, Zhang X, et al. AIP Advances, 2018, 8(5), 056413.
6 Debye P. Annalen Der Physik, 2010, 386, 1154.
7 Giauque W F, MacDougall D P. Physical Review, 1933, 43, 768.
8 Kitanovski A, Tuŝek J, Tomc U, et al. Magnetocaloric energy conversion: from theory to applications, Springer, United States, 2015, pp. 23.
9 Fortkamp F P, Lang G B, Lozano J A, et al. Applied Thermal Enginee-ring, 2020, 165, 114467.
10 Duan J F, Huang P, Zhang H, et al. Journal of Alloys and Compounds, 2007, 441, 29.
11 Shen B G, Sun J R, Hu F X, et al. Advanced Materials, 2009, 21, 4545.
12 Wang G F, Song L, Li F A, et al. Journal of Magnetism and Magnetic Materials, 2009, 321, 3548.
13 Chen X, Chen Y, Tang Y. Solid State Communications, 2014, 186, 56.
14 Pecharsky A O, Gschneidner K A, Pecharsky V K. Journal of Applied Physics, 2003, 93, 4722.
15 Fu H, Zheng Q, Wang M X. Applied Physics Letters, 2011, 99, 162504.
16 Zhong X C, Tang P F, Liu Z W, et al. Journal of Applied Physics, 2012, 111, 31.
17 Gutfleisch O, Willard M A, Bruck E, et al. Advanced Material, 2011, 23, 821.
18 Sun N K, Liu F, Gao Y B, et al. Applied Physics Letters, 2012, 100, 112407.
19 Donald I W. Journal of Materials Science, 1987, 22, 2661.
20 Qian M F. Investigation of the microstructure, thermal-induced and magnetocaloric characteristics in Ni-Mn-Ga microwires. Ph. D. Thesis, Harbin Institute of Technology, China, 2016(in Chinese).
钱明芳. Ni-Mn-Ga记忆合金纤维组织结构及热驱动磁热特性. 博士学位论文, 哈尔滨工业大学, 2016.
21 Yi J. Advanced Engineering Materials, 2018, 20(5), 1700875.
22 Craciunescu C M, Ercuta A, Mitelea I, et al. The European Physical Journal Special Topics, 2008, 158, 161.
23 Yan A, Müller K H, Gutfleisch O. Journal of Applied Physics, 2005, 97, 036102.
24 Zhang R, Qian M, Waske A, et al. Journal of Alloys and Compounds, 2019, 794, 153.
25 Qian M F, Zhang X X, Wei L S, et al. Journal of Alloys and Compounds, 2016, 660, 244.
26 Zhang R C. Magnetic transition behavior and optimization of magnetic cooling performance for La-Fe-Si magnetic microwires. Ph. D. Thesis, Harbin Institute of Technology, China, 2021(in Chinese).
张若琛. La-Fe-Si纤维磁相变行为及磁制冷性能优化, 博士学位论文, 哈尔滨工业大学, 2021.
27 Zhang R C, Zhang X X, Qian M F, et al. Journal of Alloys and Compounds, 2022, 890, 161845.
28 Yamada H. Physical Review B: Condensed Matter and Materials Physics, 1993, 47, 11211.
29 Liu J, Moore J D, Skokov K P, et al. Scripta Materialia, 2012, 67, 584.
30 Lovell E, Pereira A M, Caplin A D, et al. Advanced Energy Materials, 2015, 5(6), 1401639.
31 Moore J D, Morrison K, Sandeman K G, et al. Applied Physics Letters, 2009, 95, 252504.
32 Qian M F, Zhang X X, Li X, et al. Materials & Design, 2020, 190, 108557.
33 Qian M F, Zhang X X, Wei L S, et al. Journal of Alloys and Compounds, 2015, 645, 335.
34 Qian M F, Zhang X X, Witherspoon C, et al. Journal of Alloys and Compounds, 2013, 577, S296.
35 Qian M, Zhang X, Wei L, et al. Scientific Reports, 2018, 8, 16574.
36 Liu Y, Zhang X, Xing D, et al. Journal of Alloys and Compounds, 2014, 616, 184.
37 Liu Y, Zhang X, Liu J, et al. Materials Research, 2015, 18, 61.
38 Liu Y, Zhang X, Xing D, et al. Materials Science and Engineering: A, 2015, 636, 157.
39 Liu Y, Zhang X, Xing D, et al. Physica Status Solidi (a), 2015, 212, 855.
40 Liu Y, Zhang X, Shen H, et al. Chinese Physics B, 2020, 29(5), 56202.
41 Zhang H, Qian M, Zhang X, et al. Materials & Design, 2017, 114, 1.
42 Zhang H, Zhang X, Qian M, et al. Applied Physics Letters, 2020, 116, 063904.
43 Zhang H, Zhang X, Qian M, et al. Materials Science and Engineering: B, 2021, 274, 115477
44 Marcos J, Mañosa L, Planes A, et al. Physical Review B, 2003, 68, 094401
45 Pasquale M, Sasso C P, Lewis L H, et al. Physical Review B, 2005, 72, 094401.
46 Aguilar-Ortiz C O, Soto-Parra D, Álvarez-Alonso P, et al. Acta Materialia, 2016, 107, 9.
47 Qin F X, Bingham N S, Wang H, et al. Acta Materialia, 2013, 61, 1284.
48 Liu J, Wang Q, Wu M, et al. Journal of Alloys and Compounds, 2017, 711, 71.
49 Wang Y F, Qin F X, Luo Y, et al. Journal of Alloys and Compounds, 2018, 761, 1.
50 Shen H, Wang H, Liu J, et al. Journal of Magnetism and Magnetic Materials, 2014, 372, 23.
51 Shen H, Wang H, Liu J, et al. Journal of Alloys and Compounds, 2014, 603, 167.
52 Xing D, Shen H, Jiang S, et al. Physica Status Solidi (a), 2015, 212, 1905.
53 Xing D, Shen H, Liu J, et al. Materials Research, 2015, 18, 49.
54 Shen H X, Xing D W, Sánchez Llamazares J L, et al. Applied Physics Letters, 2016, 108, 092403.
55 Bao Y, Shen H, Xing D, et al. Journal of Alloys and Compounds, 2017, 708, 678.
56 Belliveau H F, Yu Y Y, Luo Y, et al. Journal of Alloys and Compounds, 2017, 692, 658.
57 Bao Y, Shen H, Huang Y, et al. Journal of Alloys and Compounds, 2018, 764, 789.
58 Shen H, Luo L, Xing D, et al. Physica Status Solidi (a), 2019, 216(16), 1900090.
59 Liu J, Qu G, Wang X, et al. Journal of Alloys and Compounds, 2020, 845, 156190
60 Wang Y F, Yu Y Y, Belliveau H, et al. Journal of Science: Advanced Materials and Devices, 2021, 6, 587.
61 Shen H, Luo L, Bao Y, et al. Journal of Alloys and Compounds, 2020, 837, 156190.
62 Bao Y, Shen H, Liang J, et al. Journal of Non-Crystalline Solids, 2021, 556, 120570.
63 Sheng W, Wang J Q, Wang G, et al. Intermetallics, 2018, 96, 79.
64 Luo L, Shen H, Bao Y, et al. Journal of Magnetism and Magnetic Materials, 2020, 507, 166856.
65 Yin H, Law J, Huang Y, et al. Materials & Design, 2021, 206, 109824.
66 Nielsen K K, Engelbrecht K, Bahl C R H. International Journal of Heat and Mass Transfer, 2013, 60, 432.
67 Lei T, Engelbrecht K, Nielsen K K, et al. Applied Thermal Engineering, 2017, 111, 1232.
68 Tuŝek J, Kitanovski A, Poredoŝ A. International Journal of Refrigeration, 2013, 36, 1456.
69 Navickaitė K, Liang J, Bahl C, et al. Applied Thermal Engineering, 2020, 174, 115297.
70 Moore J D, Klemm D, Lindackers D, et al. Journal of Applied Physics, 2013, 114, 043907
71 Vuarnoz D, Kawanami T. In: 13th International Conference on Sustainable Energy Technologies (SET2014). Geneva, 2014, pp. 12.
72 Incropera F, DeWitt D, Bergman T, et al. Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc. , United States, 2007, pp. 50.
73 Dong J D, Yan A R, Liu J. Journal of Magnetism and Magnetic Mate-rials, 2014, 357, 73.
74 Zhang R C, Zhang X X, Qian M F, et al. International Journal of Refri-geration, 2021, 129, 250.
[1] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[2] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[3] 马锐, 金圣楠, 龙柱, 朱瑞丰, 孙昌. 高性能内燃机用滤纸的制备及其对性能的影响[J]. 材料导报, 2024, 38(6): 22050334-6.
[4] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[5] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[6] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[7] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[8] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[9] 王昊煜, 刘哲, 贺思佳, 张健, 杭格格, 卫嬴, 汪秀琛. 可穿戴纤维基能源转换器件研究进展[J]. 材料导报, 2024, 38(3): 22060149-10.
[10] 李文龙, 支云飞, 陈泽文, 陕绍云, 李梦蕊. 纤维素-金属氧化物在传感器中的应用研究进展[J]. 材料导报, 2024, 38(3): 22060031-8.
[11] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[12] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[13] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[14] 张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
[15] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed