Research Progress on the Magnetocaloric Effect and Magnetic Refrigeration Applications of Melt-extraction-prepared Microwires
ZHANG Ruochen1,*, QIAN Mingfang2, ZHANG Xuexi2
1 School of Material Science and Engineering, Shenyang Ligong University, Shenyang 110159, China 2 School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract: This paper concentrates on the progress of the magnetocaloric effect of alloy microwires prepared by melt-extraction method, and summarizes the maximum magnetic entropy change, full width at half maximum and magnetic refrigeration capacity of different kinds of alloy microwires driven by magnetic field. The basic principle and manipulation process of melt-extraction methodincluding the advantages of the small-sized microwire applying in the magnetic refrigerator are stated, with emphasis on the ability of microwire form to solve the problems of bulk alloys. Besides, the principle of magnetocaloric effect production in different microwires are described, and the influencing mechanisms of phase transition character on the full width at half maximum, magnetic entropy change and magnetocaloric effect are clarified. Finally, the research progress on the magnetic power and coefficient of performance in active magnetic regenerator equipped with parallel wires are summarized, and the feasibility of applying large volume of small-sized alloy microwires to practical refrigeration devices aiming at improving refrigeration efficiency and power is briefly discussed.
通讯作者:
*张若琛,沈阳理工大学材料科学与工程学院副教授、硕士研究生导师。2014年吉林大学材料科学系金属材料工程专业本科毕业,2016年哈尔滨工业大学材料科学系材料学专业硕士毕业,2021年哈尔滨工业大学材料科学系材料学专业博士毕业后到沈阳理工大学工作至今。目前主要从事铁磁形状记忆合金、磁制冷材料等方面的研究工作。发表SCI论文8篇,包括Journal of Alloys and Compounds、International Journal of Refrigeration、Material Design、Intermetallics等。zhangrc@sylu.edu.cn
引用本文:
张若琛, 钱明芳, 张学习. 熔体纺丝纤维的磁热性能与磁制冷应用研究进展[J]. 材料导报, 2024, 38(11): 22110048-10.
ZHANG Ruochen, QIAN Mingfang, ZHANG Xuexi. Research Progress on the Magnetocaloric Effect and Magnetic Refrigeration Applications of Melt-extraction-prepared Microwires. Materials Reports, 2024, 38(11): 22110048-10.
1 Zimm C, Jastrab A, Stemberg A, et al. Description and performance of a near-room temperature magnetic refrigerator, Springer, United States, 1998, pp. 20. 2 Gschneidner K A, Pecharsky V K. International Journal of Refrigeration, 2008, 31, 945. 3 Hai X, Porcher F, Mayer C, et al. Journal of Applied Physics, 2018, 123, 085115. 4 Imam H, Zhang H G, Xu L, et al. 2018, 454, 243. 5 Wang G, Zhao Z, Zhang X, et al. AIP Advances, 2018, 8(5), 056413. 6 Debye P. Annalen Der Physik, 2010, 386, 1154. 7 Giauque W F, MacDougall D P. Physical Review, 1933, 43, 768. 8 Kitanovski A, Tuŝek J, Tomc U, et al. Magnetocaloric energy conversion: from theory to applications, Springer, United States, 2015, pp. 23. 9 Fortkamp F P, Lang G B, Lozano J A, et al. Applied Thermal Enginee-ring, 2020, 165, 114467. 10 Duan J F, Huang P, Zhang H, et al. Journal of Alloys and Compounds, 2007, 441, 29. 11 Shen B G, Sun J R, Hu F X, et al. Advanced Materials, 2009, 21, 4545. 12 Wang G F, Song L, Li F A, et al. Journal of Magnetism and Magnetic Materials, 2009, 321, 3548. 13 Chen X, Chen Y, Tang Y. Solid State Communications, 2014, 186, 56. 14 Pecharsky A O, Gschneidner K A, Pecharsky V K. Journal of Applied Physics, 2003, 93, 4722. 15 Fu H, Zheng Q, Wang M X. Applied Physics Letters, 2011, 99, 162504. 16 Zhong X C, Tang P F, Liu Z W, et al. Journal of Applied Physics, 2012, 111, 31. 17 Gutfleisch O, Willard M A, Bruck E, et al. Advanced Material, 2011, 23, 821. 18 Sun N K, Liu F, Gao Y B, et al. Applied Physics Letters, 2012, 100, 112407. 19 Donald I W. Journal of Materials Science, 1987, 22, 2661. 20 Qian M F. Investigation of the microstructure, thermal-induced and magnetocaloric characteristics in Ni-Mn-Ga microwires. Ph. D. Thesis, Harbin Institute of Technology, China, 2016(in Chinese). 钱明芳. Ni-Mn-Ga记忆合金纤维组织结构及热驱动磁热特性. 博士学位论文, 哈尔滨工业大学, 2016. 21 Yi J. Advanced Engineering Materials, 2018, 20(5), 1700875. 22 Craciunescu C M, Ercuta A, Mitelea I, et al. The European Physical Journal Special Topics, 2008, 158, 161. 23 Yan A, Müller K H, Gutfleisch O. Journal of Applied Physics, 2005, 97, 036102. 24 Zhang R, Qian M, Waske A, et al. Journal of Alloys and Compounds, 2019, 794, 153. 25 Qian M F, Zhang X X, Wei L S, et al. Journal of Alloys and Compounds, 2016, 660, 244. 26 Zhang R C. Magnetic transition behavior and optimization of magnetic cooling performance for La-Fe-Si magnetic microwires. Ph. D. Thesis, Harbin Institute of Technology, China, 2021(in Chinese). 张若琛. La-Fe-Si纤维磁相变行为及磁制冷性能优化, 博士学位论文, 哈尔滨工业大学, 2021. 27 Zhang R C, Zhang X X, Qian M F, et al. Journal of Alloys and Compounds, 2022, 890, 161845. 28 Yamada H. Physical Review B: Condensed Matter and Materials Physics, 1993, 47, 11211. 29 Liu J, Moore J D, Skokov K P, et al. Scripta Materialia, 2012, 67, 584. 30 Lovell E, Pereira A M, Caplin A D, et al. Advanced Energy Materials, 2015, 5(6), 1401639. 31 Moore J D, Morrison K, Sandeman K G, et al. Applied Physics Letters, 2009, 95, 252504. 32 Qian M F, Zhang X X, Li X, et al. Materials & Design, 2020, 190, 108557. 33 Qian M F, Zhang X X, Wei L S, et al. Journal of Alloys and Compounds, 2015, 645, 335. 34 Qian M F, Zhang X X, Witherspoon C, et al. Journal of Alloys and Compounds, 2013, 577, S296. 35 Qian M, Zhang X, Wei L, et al. Scientific Reports, 2018, 8, 16574. 36 Liu Y, Zhang X, Xing D, et al. Journal of Alloys and Compounds, 2014, 616, 184. 37 Liu Y, Zhang X, Liu J, et al. Materials Research, 2015, 18, 61. 38 Liu Y, Zhang X, Xing D, et al. Materials Science and Engineering: A, 2015, 636, 157. 39 Liu Y, Zhang X, Xing D, et al. Physica Status Solidi (a), 2015, 212, 855. 40 Liu Y, Zhang X, Shen H, et al. Chinese Physics B, 2020, 29(5), 56202. 41 Zhang H, Qian M, Zhang X, et al. Materials & Design, 2017, 114, 1. 42 Zhang H, Zhang X, Qian M, et al. Applied Physics Letters, 2020, 116, 063904. 43 Zhang H, Zhang X, Qian M, et al. Materials Science and Engineering: B, 2021, 274, 115477 44 Marcos J, Mañosa L, Planes A, et al. Physical Review B, 2003, 68, 094401 45 Pasquale M, Sasso C P, Lewis L H, et al. Physical Review B, 2005, 72, 094401. 46 Aguilar-Ortiz C O, Soto-Parra D, Álvarez-Alonso P, et al. Acta Materialia, 2016, 107, 9. 47 Qin F X, Bingham N S, Wang H, et al. Acta Materialia, 2013, 61, 1284. 48 Liu J, Wang Q, Wu M, et al. Journal of Alloys and Compounds, 2017, 711, 71. 49 Wang Y F, Qin F X, Luo Y, et al. Journal of Alloys and Compounds, 2018, 761, 1. 50 Shen H, Wang H, Liu J, et al. Journal of Magnetism and Magnetic Materials, 2014, 372, 23. 51 Shen H, Wang H, Liu J, et al. Journal of Alloys and Compounds, 2014, 603, 167. 52 Xing D, Shen H, Jiang S, et al. Physica Status Solidi (a), 2015, 212, 1905. 53 Xing D, Shen H, Liu J, et al. Materials Research, 2015, 18, 49. 54 Shen H X, Xing D W, Sánchez Llamazares J L, et al. Applied Physics Letters, 2016, 108, 092403. 55 Bao Y, Shen H, Xing D, et al. Journal of Alloys and Compounds, 2017, 708, 678. 56 Belliveau H F, Yu Y Y, Luo Y, et al. Journal of Alloys and Compounds, 2017, 692, 658. 57 Bao Y, Shen H, Huang Y, et al. Journal of Alloys and Compounds, 2018, 764, 789. 58 Shen H, Luo L, Xing D, et al. Physica Status Solidi (a), 2019, 216(16), 1900090. 59 Liu J, Qu G, Wang X, et al. Journal of Alloys and Compounds, 2020, 845, 156190 60 Wang Y F, Yu Y Y, Belliveau H, et al. Journal of Science: Advanced Materials and Devices, 2021, 6, 587. 61 Shen H, Luo L, Bao Y, et al. Journal of Alloys and Compounds, 2020, 837, 156190. 62 Bao Y, Shen H, Liang J, et al. Journal of Non-Crystalline Solids, 2021, 556, 120570. 63 Sheng W, Wang J Q, Wang G, et al. Intermetallics, 2018, 96, 79. 64 Luo L, Shen H, Bao Y, et al. Journal of Magnetism and Magnetic Materials, 2020, 507, 166856. 65 Yin H, Law J, Huang Y, et al. Materials & Design, 2021, 206, 109824. 66 Nielsen K K, Engelbrecht K, Bahl C R H. International Journal of Heat and Mass Transfer, 2013, 60, 432. 67 Lei T, Engelbrecht K, Nielsen K K, et al. Applied Thermal Engineering, 2017, 111, 1232. 68 Tuŝek J, Kitanovski A, Poredoŝ A. International Journal of Refrigeration, 2013, 36, 1456. 69 Navickaitė K, Liang J, Bahl C, et al. Applied Thermal Engineering, 2020, 174, 115297. 70 Moore J D, Klemm D, Lindackers D, et al. Journal of Applied Physics, 2013, 114, 043907 71 Vuarnoz D, Kawanami T. In: 13th International Conference on Sustainable Energy Technologies (SET2014). Geneva, 2014, pp. 12. 72 Incropera F, DeWitt D, Bergman T, et al. Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc. , United States, 2007, pp. 50. 73 Dong J D, Yan A R, Liu J. Journal of Magnetism and Magnetic Mate-rials, 2014, 357, 73. 74 Zhang R C, Zhang X X, Qian M F, et al. International Journal of Refri-geration, 2021, 129, 250.