Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5115-5119    https://doi.org/10.11896/cldb.19020119
  金属与金属基复合材料 |
TiAl合金焊接裂纹控制研究进展
陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才
哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
Research Progress on Welding Crack Control of TiAl Alloy
CHEN Guoqing, ZHANG Ge, YIN Qianxing, ZHANG Binggang, FENG Jicai
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 2400KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新一代航空发动机追求轻量化与高性能,在发动机设计制造过程中大量新材料和异种材料被选用。TiAl合金作为一种轻质、高强的新型高温结构材料逐渐走进人们的视野,并因其优良的高温性能及抗氧化性能受到航空航天等高尖端领域学者的广泛关注。由此可预见,TiAl合金将成为一种重要的工程材料,因此迫切需要对TiAl合金的焊接问题进行研究,推进其工业化应用。
  TiAl合金虽然高温性突出,但其室温塑性差,极易产生焊接裂纹,该问题在熔化焊中尤为明显。此外,TiAl合金是一种脆性材料,在快速加热冷却的焊接热循环条件下,接头组织不仅易硬化,变形能力和断裂韧性降低,而且焊接区会形成较大的热致应力, 引发接头开裂。
  鉴于TiAl合金焊接性较差,焊接裂纹的控制成为其焊接研究的重点。目前,TiAl合金焊接裂纹控制方法主要包括钎料成分设计、交替纳米镀层、大电流焊接、中间层金属设计、焊前预热及焊后热处理等。钎料成分设计、交替纳米镀层和中间层金属设计通常用于钎焊、扩散焊等非熔化焊接,这些方法能够降低焊接残余应力,减少脆性相的生成,但接头性能受填充金属的限制。大电流焊接和焊前预热及焊后热处理多用于TiAl合金熔化焊接,较大的热输入和高温停留时间能够促进接头的相转变,并且有利于焊接残余应力的释放,但也会导致焊缝晶粒粗大等问题,焊接工艺还有待进一步优化。
  本文系统地介绍了TiAl合金焊接裂纹的成因及裂纹控制研究进展,重点对不同裂纹控制方法的适用范围和特点进行了分析,以建立焊接接头组织与力学性能的联系,最后对TiAl合金焊接研究方向提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈国庆
张戈
尹乾兴
张秉刚
冯吉才
关键词:  TiAl合金  焊接技术  焊接裂纹  显微组织  力学性能    
Abstract: The new generation of aerospace engines pursues lightweight and high performance. A large number of new materials and dissimilar materials are selected in the process of engine design and manufacture. TiAl alloy, a high temperature structural material with lightweight and high strength, has gradually entered people’s vision. And it has attracted extensive attention in high-tech fields such as aerospace, due to its excellent high-temperature performance and oxidation resistance. It can be predicted that TiAl alloy will become an important engineering material. Thus, it is urgent to investigate the welding technology of TiAl alloy and promote its industrial application.
  Though, TiAl alloy has prominent high temperature property, it has poor plasticity at room temperature. It is prone to cracks during the welding process, which is particularly severe in fusion welding. As TiAl alloy is a brittle material, the microstructure of the joint is easy to be hardened, during the rapid heating and cooling process. On the other hand, a high thermal stress is accumulated in the joint, causing it to crack.
  Considering the poor plasticity of TiAl alloy, control of welding crack of TiAl alloy has become the keystone of corresponding research. At pre-sent, the control methods of welding crack mainly include: design of solder composition, alternating nanometric layers, welding with high current, design of metallic interlayers, preheating and post-weld heat treatment, etc. Design of solder composition, alternating nanometric layers and design of metallic interlayers are usually used for non-fusion welding, such as brazing and diffusion bonding. They can decrease the residual stress and reduce the formation of brittle phases. But the mechanical properties of the joint is severely effcted by the intermediate metal. Welding with high current, preheating and post-heat treatment are mostly used for fusion welding of TiAl alloy. The high heat input and long temperature dwell time are benefit for the microstructure transformation of brittle phases and release of high residual stress of the joint. But they can also introduce the coarsen of grains of the joint, which requires further optimization of the welding process.
  In this paper, the causes of cracking and research progress of crack control are introduced. The application scope and characteristics of diffe-rent crack control methods are analyzed to establish the relationship between microstructure and mechanical properties of the joint. Finally, suggestions for future research about welding of TiAl alloy are proposed.
Key words:  TiAl alloy    welding technology    welding crack    microstructure    mechanical properties
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TG406  
基金资助: 国家自然科学基金(51774106)
通讯作者:  chenguoqing@hit.edu.cn   
作者简介:  陈国庆,哈尔滨工业大学先进焊接与连接国家重点实验室副教授。主要从事电子束增材制造,新材料及异种材料电子束焊接。获得国家技术发明二等奖和黑龙江省自然科学基金二等奖。目前发表论文60余篇,获得国内外授权专利30余项。
引用本文:    
陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
CHEN Guoqing, ZHANG Ge, YIN Qianxing, ZHANG Binggang, FENG Jicai. Research Progress on Welding Crack Control of TiAl Alloy. Materials Reports, 2020, 34(5): 5115-5119.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020119  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5115
1 Yamaguchi M, Inui H, Ito K. Acta Materialia, 2000, 48(1),307.
2 Leyens C, Peters M. Titanium and titanium alloys, Chemical Industry Press, China, 2005(in Chinese).
Leyens C, Peters M. 钛与钛合金, 化学工业出版社, 2005.
3 Zhang B G, Feng J C, Wu L, et al. Welding & Joinning, 2004(5), 14(in Chinese).
张秉刚, 冯吉才, 吴林,等.焊接, 2004(5), 14.
4 Zghal S, Thomas M, Naka S, et al. Acta Materialia, 2005, 53(9), 2653.
5 Liu J F, Zhu Y, Kang H, et al. Welding & Joinning, 2004(2), 34(in Chinese).
刘景峰, 朱颖, 康慧,等.焊接, 2004(2), 34.
6 Erdely P, Staron P, Maawad E, et al. Materials & Design, 2017, 131, 286.
7 Huang X, Li Z X, Gao F, et al. Aeronautical Manufacturing Technology, 2014, 451(7), 70(in Chinese).
黄旭, 李臻熙, 高帆, 等.航空制造技术, 2014, 451(7),70.
8 Yang R.Acta Metallurgica Sinica, 2015, 51(2),129(in Chinese).
杨锐.金属学报, 2015, 51(2),129.
9 Arenas M F, Acoff V L. High Temperature Materials and Processes, 2004, 23(1),25.
10 Liu J, Dahmen M, Ventzke V, et al.Intermetallics, 2013, 40,65.
11 Cai X, Sun D, Li H, et al.Optics & Laser Technology, 2017, 97,42.
12 Arenas M F, Acoff V L.Scripta Materialia, 2002, 46(3),241.
13 Ramos A S, Vieira M T, Vieira M F, et al. Materials Science Forum, 2006, 514,483.
14 Acoff V L, Wilkerson S, Arenas M.Materials Science and Engineering: A, 2002, 329, 763.
15 Chen G Q, Zhang B G, Liu W, et al.Transaction of the China Welding Institution, 2010(1), 1(in Chinese).
陈国庆, 张秉刚, 刘伟, 等.焊接学报, 2010(1), 1.
16 Chaturvedi M C, Xu Q, Richards N L. Journal of Materials Processing Technology, 2001, 118(1-3),74.
17 Cao J, Li C, Qi J, et al. Composites Science and Technology, 2015, 115,72.
18 Dong H, Yang Z, Yang G, et al.Materials Science and Engineering: A, 2013, 561,252.
19 Saida K, Ohnishi H, Nishimoto K.Welding in the World, 2015, 59(1),9.
20 Li L, Li X, Li Z, et al.Advanced Engineering Materials, 2016, 18(2),341.
21 Cao J, He P, Wang M.Intermetallics, 2011, 19(7),855.
22 Song X G. Research on brazing process and mechanism of TiAl alloy to Si3N4 ceramic. Ph.D. Thesis, Harbin Institute of Technology, China, 2012(in Chinese).
宋晓国. TiAl合金与Si3N4陶瓷钎焊工艺及机理研究. 博士学位论文, 哈尔滨工业大学, 2012.
23 Mirski Z, Róz·ański M. Archives of Civil and Mechanical Engineering, 2013, 13(4),415.
24 Cao J, Dai X, Liu J, et al. Materials & Design, 2017, 121, 176.
25 Song X G, Si X Q, Cao J, et al. Rare Metal Materials and Engineering, 2018, 47(1), 52.
26 Ren H S, Xiong H P, Chen B, et al.Journal of Materials Processing Technology, 2015, 224, 26.
27 Duarte L I, Ramos A S, Vieira M F, et al.Intermetallics, 2006, 14(10-11), 1151.
28 Ustinov A I, Falchenko Y V, Ishchenko A Y, et al.Intermetallics, 2008, 16(8),1043.
29 Simoes S, Viana F, Ventzke V, et al.Journal of Materials Science, 2010, 45(16),4351.
30 Simoes S, Viana F, Kocak M, et al.Materials Chemistry & Physics, 2011, 128(1),202.
31 Bharani D J, Acoff V L.Metallurgical and Materials Transactions A, 1998, 29(13), 927.
32 Arenas M F, Acoff V L.Welding Journal, 2003, 82(5),110.
33 Nabavi A, Khaki J V. Surface and Interface Analysis, 2010, 42(4), 275.
34 Cao J, Feng J C, Li Z R.Scripta Materialia, 2007, 57(5), 421.
35 Feng G, Li Z, Zhou Z, et al. Materials & Design, 2016, 110,130.
36 Feng G, Li Z, Jacob R J, et al.Materials & Design, 2017, 126, 197.
37 Liu J, Dahmen M, Ventzke V, et al. Intermetallics, 2013, 40, 65.
38 Kuwahara G, Yamaguchi S, Nanri K, et al. In: High-Power Lasers in Manufacturing. Osaka, 2000, pp. 411.
39 Chaturvedi M C, Richards N L, Xu Q. Materials Science and Enginee-ring: A, 1997, 239,605.
40 Reisgen U, Olschok S, Backhaus A.Materialwissenschaft und Werkstofftechnik, 2010, 41(11), 897.
41 Chen G Q, Zhang B G, Liu W, et al. Intermetallics, 2011, 19(12),1857.
42 Li Y, Wang H, Han K, et al.Journal of Materials Processing Technology, 2017, 250,401.
43 Liu J, Ventzke V, Staron P, et al. Metallurgical and Materials Transactions A, 2014, 45(1),16.
44 Han K, Wang H, Zhang B, et al. Materials & Design, 2017, 131,273.
[1] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[2] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[3] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[4] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[5] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[6] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[7] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[8] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[9] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[10] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[11] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[12] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[13] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[14] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[15] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed