Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5109-5114    https://doi.org/10.11896/cldb.19010094
  金属与金属基复合材料 |
激光维持等离子体钛合金表面渗氮研究进展
郭晋昌1,2, 石玗1, 耿培彪1, 朱明1
1 兰州理工大学省部共建有色金属先进材料加工与再利用国家重点实验室,兰州 730050;
2 陇东学院机械工程学院,庆阳 745000
Research Progress on Laser-sustained Plasma Surface Nitriding of Titanium Alloys
GUO Jinchang1,2, SHI Yu1, GENG Peibiao1, ZHU Ming1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;
2 College of Mechanical Engineering, Longdong University, Qingyang 745000, China
下载:  全 文 ( PDF ) ( 2815KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛合金具有强度高、密度小等诸多优点,在航空航天等行业具有广阔的应用前景,但是硬度低和耐磨性差限制了其进一步应用。利用物理气相沉积(PVD)和化学气相沉积(CVD)等方法可提高钛合金表面硬度和耐磨性,但是这些方法存在效率低等缺点。钛合金表面激光气体渗氮可快速提高钛合金表面硬度和耐磨性,但是渗氮工艺复杂,需要解决很多科学和技术问题。国内学者开始重视此方面研究,国外学者的研究已经取得了一些成果,目前的研究热点是渗氮过程的机理和等离子体对渗氮过程的影响。
  最近几年,国外学者采用高速摄像配合不同波长的透镜对等离子体进行系统化拍摄研究,对氮等离子体产生的条件以及等离子体对能量传输、防止渗氮层氧化、增加渗氮层氮含量的作用有了较深入的认识。目前的研究认为氮离子对激光渗氮是有益的,并且等离子体是实现高质量渗氮的核心。在以上研究的基础上,发展了激光维持等离子体渗氮方法,该方法采用激光诱导产生氮等离子体,并在大激光功率、大离焦距离和大扫描速度的工艺参数下渗氮;进一步研究了离焦距离、扫描速度及氮氩比例等工艺参数对激光维持等离子体渗氮过程的影响。激光维持等离子体渗氮层容易开裂,为解决渗氮层开裂问题,发展了两步法激光维持等离子体渗氮方法:第一步激光诱导产生氮等离子体,实现基体大量渗氮;第二步在氩等离子体中用激光重熔渗氮层,消除裂纹。两步渗氮法增强了对渗氮层性能的控制能力,可使得渗氮层性能更优。另外,对渗氮过程进行了定量研究,发现激光扫描速度与钛合金表面熔池存在时间呈线性关系,并且激光扫描速度与渗氮层氮含量呈线性关系,渗氮层硬度和树枝晶含量也呈线性关系;最后研究了两步法激光维持氮等离子体渗氮层的耐磨性,提出渗氮层耐磨性增强的机理。
  本文综述了激光维持等离子体钛合金表面渗氮的研究进展,分别介绍了等离子体的作用,激光维持等离子体渗氮方法,两步法激光维持等离子体渗氮方法,提出了未来亟需解决的重点问题及有效的研究方法,为未来的研究工作提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭晋昌
石玗
耿培彪
朱明
关键词:  激光维持等离子体  钛合金  激光渗氮  两步法渗氮    
Abstract: Titanium alloys has many advantages such as high strength and low density, and has broad application prospects in aerospace and other industries, but its low hardness and poor wear resistance limit its further application. Physical vapor deposition (PVD) and chemical vapor deposition (CVD) can improve the surface hardness and wear resistance of titanium alloy, but these methods have disadvantages such as low efficiency. Laser nitriding of titanium alloy can quickly improve surface hardness and wear resistance of the titanium alloy, but the nitriding progress is complicated and many scientific and technical problems need to be solved. Domestic scholars have begun to pay attention to this research, foreign scholars have made some achievements. The current research focus on the mechanism of nitriding process and the effect of plasma on nitriding process.
  In recent years, foreign scholars have used high-speed imaging with different wavelengths of lenses to systematically study plasma, the conditions for the generation of nitrogen plasma as well as the role of plasma on energy transmission, prevent oxidation and the increase nitrogen content in nitrided layer have been deeply understood.At present, it is considered that nitrogen plasma is beneficial to laser nirtiding, and plasma is the core to obtain high quality of nitride layer.Based on the above research, a laser-sustained plasma nitriding method has been developed,in this method, nitrogen plasma is inducted by laser, nitriding is performed under the parameters of large laser power, large defocus distance and large scanning speed; the effects of process parameters such as defocus distance, scanning speed and nitrogen-argon ratio on laser-sustained plasma nitriding process were further studied. The laser-sustained plasma nitride layer is easy to crack, in order to avoid cracking of nitriding layer, two-step laser-sustained plasma nitriding method was also developed, the first step is use laser-induced nitrogen plasma to achieve a large amount of nitrogen content of the substrate; the second step is to remelt the nitrided layer by laser in argon plasma to eliminate cracks. The two-step nitriding method enhances the ability to control the performance of the nitrided layer, the nitrogen layer performance is better.In addition, a quantitative study on the nitriding process was carried out, it was found that the laser scanning speed is directly proportional to the time of molten pool on the surface of titanium alloy and the laser scanning speed is directly protortional to the nitrogen content of nitriding layer; the hardness of the nitrided layer and the dendrite content are also linear relationship; the wear resistance of two-step laser-maintained plasma nitride layer was studied, and the mechanism of enhanced wear resistance of nitrided layer was proposed.
  Research progress on laser-sustained plasma surface nitriding of titanium alloys are reviewed, the role of plasma, laser-sustained plasma nitriding and two-step laser-sustained plasma nitriding methods are introduced respectively, the key issues and effective research methods are proposed to provide reference for future research work.
Key words:  laser-sustained plasma    titanium alloy    laser nitriding    two-step nitriding method
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TG146.2  
基金资助: 省部共建有色金属先进加工与再利用国家重点实验室(兰州理工大学)开放课题(SKLAB02019005);国家自然科学基金面上项目(51675256);国家自然科学基金青年项目(51805234);甘肃省基础研究创新群体计划(17JR5RA107);甘肃省引导科技创新发展专项资金项目(2019ZX-08)
通讯作者:  shiyu@lut.cn   
作者简介:  郭晋昌,2012年6月毕业于兰州理工大学,获得材料加工工程专业硕士学位。现为陇东学院老师,同时在兰州理工大学攻读材料加工工程专业博士学位,在石玗教授的指导下进行科研工作。目前主要研究领域为钛合金表面改性石玗,教授、博士研究生导师。兰州理工大学研究生学院院长。现为甘肃省飞天学者特聘教授、省部共建有色金属先进加工与再利用国家重点实验室副主任,The Scientific World Journal杂志编委,多种国内外杂志审稿人。兼任机械工程学会焊接学会机器人与自动化委员会委员,甘肃省焊接学会秘书长,国家自然科学基金项目评议专家。主要从事有色金属材料、先进焊接方法、焊接物理及焊接过程控制等领域的研究工作,发表学术论文100余篇,其中SCI、EI、ISTP收录50余篇,主持国家自然科学基金、省部级基金项目20多项。
引用本文:    
郭晋昌, 石玗, 耿培彪, 朱明. 激光维持等离子体钛合金表面渗氮研究进展[J]. 材料导报, 2020, 34(5): 5109-5114.
GUO Jinchang, SHI Yu, GENG Peibiao, ZHU Ming. Research Progress on Laser-sustained Plasma Surface Nitriding of Titanium Alloys. Materials Reports, 2020, 34(5): 5109-5114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010094  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5109
1 Poondla N, Srivatsan T S, Patnaik A, et al. Jorunal of Alloys and Compounds 2009, 486(1), 162.
2 Xu C, Zhu W F. Transactions of Nonferrous Metals Society of China, 2010, 20(11), 2162.
3 Dong H. Surface Engineering of Light Alloys, 2010, 10(1), 58.
4 Sproul W D. Surface & Coatings Technology, 1996, 81(1), 1.
5 Torrent F, Lavisse L, Berger P, et al. Surface & Coatings Technology, 2014, 55(2), 146.
6 Zhecheva A, Sha W, Malinov S A, et al. Surface Coatings Technology, 2005, 200(7), 2192.
7 Sarma B, Ravi K S. The Minerals Metals Materials Journals, 2011, 63(2), 85.
8 Man H C, Cui Z D, Yue T M, et al. Materials Science and Engineering, 2003, 355(2), 167.
9 Kaspar J, Bretschneider J, Jacob S, et al. Surface Engineering, 2007, 23(2), 99.
10 Duraiselvam M, Shariff S M, Padmanabham G, et al. Wear, 2013, 309(1), 269.
11 Lisiecki A, Piwnik J. Archives of Metallurgy and Materials, 2016, 61(2), 543.
12 Katayama S, Matsunawa A, Arata Y, et al. In: Metallurgical Society of AIME Annual Meeting. Philadelphia,1984, pp. 39.
13 Xue L, Islam M, Koul A K, et al. Advanced Performance Materials,1997, 4(1), 25.
14 Raaif M, El-Hossary F M, Negm N Z, et al. Journal of Physics D Applied Physics, 2008, 41(8), 85208.
15 Hoche D, Shinn M, Müller S, et al. Journal of Applied Physics, 2009, 105(8), 1.
16 Lisiecki A. Metals, 2015, 5(1), 54.
17 Schaaf P. Progress in Materials Science, 2002, 47(1), 1.
18 Abboud J H, Fidel A F, Benyounis K Y. Optics & Laser Technology, 2007, 40(2), 405.
19 Kloosterman A B, De Hosson J T M. Scripta Metallurgica et Materialia, 1995, 33(4), 567.
20 Thomann A L, Sicard E, Boulmer-Leborgne C, et al. Surface and Coa-tings Technology, 1997, 97(3), 448.
21 Akarapu R K, Dua P, Campbell A, et al. Materials Research Society Proceedings, 2007, 1040(2), 25.
22 Thomann A L, Boulmer-Leborgne C, Andreazza-Vignolle C, et al. Journal of Applied Physics, 1996, 80(8), 46783.
23 Giren B G. Plasma Chemistry and Plasma Processing, 1993, 13(1), 133.
24 Giren B G. Journal of Physics D:Applied Physics, 1991, 24(7), 1086.
25 Hoche D, Schaaf P. Heat and Mass Transfer, 2010, 47(5), 519.
26 Qi Y T, Liu S X, Zhang S Z, et al. Iron Steel Vanadium Titanium, 2014, 35(6), 22(in Chinese).
齐勇田, 刘世玺, 张世忠, 等.钢铁钒钛, 2014, 35(6), 22.
27 Xue L, Islam M U, Koul A K, et al. Advanced Performance Materials, 1997, 4(1), 25.
28 Nwobu A I P, Rawlings R D, West D R F, et al. Acta Mater, 1999, 47(2), 631.
29 Cao L Q, Xuan F Z, Wang Z D, et al. Transactions of Materials and Heat Treatment, 2011, 32(11), 157(in Chinese).
曹丽琴, 轩福贞, 王正东, 等.材料热处理学报, 2011, 32(11), 157.
30 Selamat M S, Baker T N, Watson L M. Journal of Materials Processing Technology, 2001, 113(3), 509.
31 Weerasinghe V M, West D R F, Czajlik M. Materials Science Forum, 1992, 104(3), 102.
32 Jianglong L, Qiquan L, Zhirong Z. Surface and Coatings Technology, 1993, 57(2), 191.
33 Bonss S T, Brenner B, Beyer E. Materialwissenschaft Und Werkstofftechnik, 2001, 32(2), 160.
34 Mridha S, Baker T N. Materials Science and Engineering, 1994, 188(1), 229.
35 Mridha S, Baker T N. Materials Science and Engineering, 1991, 142(1), 115.
36 Nassar A R, Akarapu R, Copley S M, et al. Journal of Physics D:Applied Physics, 2012, 45(18), 1.
37 Kamat A M, Copley S M, Todd J A. In: Proceedings of the 13th World Conference on Titanium. California, 2016, pp. 893.
38 Han B, Fu X Q, Cao N, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(9), 2302(in Chinese).
韩彬, 付现桥, 曹宁, 等. 中国有色金属学报, 2014, 24(9), 2302.
39 Saha N C, Tompkins H G. Journal of Applied Physics, 1992, 72(7), 3072.
40 Kamat A M, Copley S M, Todd J A. Journal of Applied Physics, 2016, 107(1), 72.
41 Li X W, Wu J, Jia S L. Foundation and Application of Discharge Plasma, Science Press, China, 2017(in Chinese).
李兴文, 吴坚, 贾申利. 放电等离子体基础及应用, 科学出版社, 2017.
42 Akarapu R, Nassar A R, Copley S M, et al. Journal of Laser Applications, 2009, 21(4), 169.
43 Baker T N, Selamat M S. Materials Science and Technology, 2008, 24(2), 189.
44 Xin H, Hu C, Baker T N. Journal of Materials Science, 2000, 35(13), 3373.
45 Weerasinghe V M, West D R F, Damborenea J. Journal of Materials Processing Technology, 1996, 58(1), 79.
46 Kamat A M, Copley S M, Todd J A. Surface and Coatings Technology, 2017, 313(15), 82.
47 Kamat A M, Segall A E, Copley S M, et al. Surface and Coatings Technology, 2017, 325(1), 229.
48 Sathish S, Geetha M, Pandey N D, et al. Materials Science and Engineering, 2010, 30(3), 376.
49 Cline H E, Anthony T R. Journal of Applied Physics, 1977, 48(9), 3895.
50 Conrad H. Materials Science, 1981, 26(2), 123.
[1] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[4] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[5] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[6] 刘强, 惠松骁, 宋生印, 叶文君, 于洋. 油气开发用钛合金油井管选材及工况适用性研究进展[J]. 材料导报, 2019, 33(5): 841-853.
[7] 郭萍, 赵永庆, 洪权, 毛小南, 侯红苗, 潘浩. TC4-DT钛合金疲劳裂纹扩展的微观机制[J]. 材料导报, 2019, 33(20): 3448-3451.
[8] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[9] 武靖伟, 张忠科, 车朋卫. 钎料Zn对钛/铝搅拌摩擦钎焊接头组织和性能的影响[J]. 材料导报, 2019, 33(18): 3067-3071.
[10] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[11] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[12] 姚罡, 付明杰. TNW700高温钛合金热过程中的相组织变化分析[J]. 材料导报, 2018, 32(20): 3584-3589.
[13] 缪倩倩, 陈海燕, 顾伟, 蒋永锋, 宋亓宁. 钛合金表面阳极微弧等离子体渗硼层的研究[J]. 材料导报, 2018, 32(18): 3161-3165.
[14] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[15] 杨海欧,王健,王冲,魏雷,周颖惠,林鑫. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 《材料导报》期刊社, 2018, 32(12): 2028-2031.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed