Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21030199-10    https://doi.org/10.11896/cldb.21030199
  无机非金属及其复合材料 |
乳化沥青与RAP再生界面融合特征研究进展
王振军1,2,*, 阎凤凤1, 张含笑1, 梁晴陨1
1 长安大学材料科学与工程学院,西安 710061
2 交通铺面材料教育部工程研究中心,西安 710064
Research Progress of Interfacial Fusion Characteristics Between Emulsified Asphalt and RAP
WANG Zhenjun1,2,*, YAN Fengfeng1, ZHANG Hanxiao1, LIANG Qingyun1
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China
2 Engineering Research Center of Pavement Materials, Ministry of Education of P.R. China, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 20792KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,国内外沥青路面再生技术发展迅速,如何高效循环利用沥青路面再生材料(RAP)成为亟待解决的问题,将RAP用于制备乳化沥青冷再生混合料便是其主要用途之一。然而,当乳化沥青和RAP混合时,新旧沥青分子会重新融合,使冷再生混合料内部界面呈现多样的融合特征。冷再生混合料内部界面融合状态与其界面强度和宏观性能密切相关,因此,揭示乳化沥青与RAP界面融合特征是沥青路面冷再生技术研究的重点。本文基于Fick理论和复合理论对乳化沥青与RAP再生界面融合理论进行了归纳总结。乳化沥青与RAP两相界面融合效果会影响混合料内聚力和内摩阻力,进而影响界面强度。另外,本文从RAP材料性质、沥青组分特征、外界条件、RAP掺量以及再生剂五个方面分析了界面融合影响规律,其中,RAP材料性质和外界条件对再生沥青混合料的影响最显著;乳化沥青对旧沥青的融合程度和旧沥青对乳化沥青的融合程度基本接近,但在不同的温度下有一些差异;理论上,RAP与乳化沥青接触时两端浓度差会促进新旧沥青融合,但RAP表面的大分子沥青质会阻止其融合;RAP掺量直接影响再生混合料的抗拉强度和抗车辙能力;加入再生剂可以改变沥青轻质组分和硬质组分比例,有效提高界面融合效率。最后,提出乳化沥青与RAP界面融合改善可以从乳化沥青、RAP和两相连接三方面考虑,以期为未来乳化沥青和RAP界面融合研究提供理论和技术基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王振军
阎凤凤
张含笑
梁晴陨
关键词:  乳化沥青  沥青路面再生材料(RAP)  界面融合特征  再生融合评价参数  影响因素    
Abstract: In recent years, asphalt pavement regeneration technology have developed rapidly at home and abroad. How to efficiently recycle reclaimed asphalt pavement (RAP) has become an urgent problem. One of its main uses is to prepare emulsified asphalt cold recycled mixture. Ho-wever, the old and new asphalt molecules will be re-integrated when the emulsified asphalt and RAP are mixed,which can make the internal interfaces of the cold recycled mixture show diverse fusion characteristics. The internal interface fusion state of the cold recycled mix is closely related to its interface strength and macroscopic properties. Therefore, the interface fusion characteristics of emulsified asphalt and RAP become the focus of research on cold recycled technology for asphalt pavement. The theories of interfacial fusion between emulsified asphalt and RAP rege-neration are summarized based on Fick’s and composite theory in this paper. The cohesion and internal friction resistance of the mixture are influenced by the effect of interfacial fusion between the two phases of emulsified asphalt and RAP, which can in turn affect the interfacial strength. In addition, the interfacial fusion influence law is analyzed from five aspects in this paper:RAP material properties, asphalt component characteristics, external conditions, RAP’s dosage and regenerate. Among them, properties of RAP and external conditions have the most significant impact on recycled asphalt mixtures. The fusion degrees of emulsified asphalt and old asphalt are basically close, but there are some differences at different temperatures. Theoretically, the concentration difference between RAP and emulsified asphalt will promote the fusion of old and new asphalt, but the large asphaltene on RAP surface can prevent the fusion. The tensile strength and rutting resistance of the recycled mix are directly affected by the amount of RAP. The addition of regenerating agent can change the ratio of light and hard asphalt components, and effectively improve the efficiency of interfacial fusion. Finally, the improvement methods of interfacial fusion between emulsified asphalt and RAP are proposed from three aspects of emulsified asphalt, RAP, and two-phase connection, which can provide theoretical and technical basis for future research on interfacial fusion of emulsified asphalt and RAP.
Key words:  emulsified asphalt    reclaimed asphalt pavement (RAP)    interface fusion characteristic    evaluation parameters of regeneration fusion    influencing factor
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TB302  
基金资助: 国家自然科学基金(51978067);新疆生产建设兵团重点科技攻关项目(2019AB013)
通讯作者:  * 王振军,长安大学材料科学与工程学院教授、博士研究生导师。2007年长安大学公路学院道路与铁道工程专业博士毕业后在长安大学工作至今。目前主要从事道路工程材料、建筑材料等方面的研究工作。发表论文100余篇,包括Cement and Concrete Composites、 Journal of Cleaner Production、Construction and Building Materials、《中国公路学报》《硅酸盐学报》等。zjwang@chd.edu.cn   
引用本文:    
王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
WANG Zhenjun, YAN Fengfeng, ZHANG Hanxiao, LIANG Qingyun. Research Progress of Interfacial Fusion Characteristics Between Emulsified Asphalt and RAP. Materials Reports, 2023, 37(7): 21030199-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030199  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21030199
1 Qin Y C. China Highway, 2020(1), 70(in Chinese).
秦永春. 中国公路, 2020(1), 70.
2 Guo P, Xie F Z, Meng J W, et al. Materials Reports, 2020, 34(13), 13100(in Chinese).
郭鹏, 谢凤章, 孟建玮, 等. 材料导报, 2020, 34(13), 13100.
3 Wang Z, Cai L, Wang X, et al. Materials, 2018, 11(7), 1145.
4 Kupolati W K. European Journal of Scientific Research, 2010, 7(2), 1663.
5 Navaro J, Bruneau D, Drouadaine I, et al. The European Physical Journal Applied Physics, 2012, 58(2), 21001.
6 Bowers B F, Huang B, Shu X, et al. Construction and Building Materials, 2014, 50(1), 517.
7 Wang J. Contemporary Chemical Industry, 2017, 46(8), 1527(in Chinese).
王娇. 当代化工, 2017, 46(8), 1527.
8 Li M T. Study on adhesion between asphalt and aggregate based on surface energy theory. Master's Thesis, Chongqing Jiaotong University, China, 2017 (in Chinese).
李明婷. 基于表面能理论的沥青与集料黏附性研究. 硕士学位论文, 重庆交通大学, 2017.
9 Wang Z J, An D D, Liu L, et al. Journal of Chang’an University(Na-tural Science Edition), 2016, 36(5), 16(in Chinese).
王振军, 安等等, 刘亮, 等. 长安大学学报(自然科学版), 2016, 36(5), 16.
10 Pi Y, Huang Z, Pi Y, et al. Materials, 2019, 12(17), 2682.
11 Lin J, Wei T, Hong J, et al. Construction & Building Materials, 2015, 99, 137
12 Liu Z. Low Carbon World, 2016(10), 200(in Chinese).
刘争. 低碳世界, 2016(10), 200.
13 Zhang Q R, Cai X, Wu K H, et al. Construction and Building Materials, 2021, 300, 124049.
14 Paul A, Laurila T, Vuorinen V, et al. Thermodynamics, diffusion and the kirkendall effect in solids, Springer International Publishing, USA, 2014,
15 Karlsson R, Isacsson U, Ekblad J. Journal of Materials Science, 2007, 42(1), 101.
16 Gao F. Diffusion mechanism and macro-micro characteristics of fresh-RAP binders. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
高飞. 新-旧沥青混合体系扩散机制及宏微观特性研究. 硕士学位论文, 哈尔滨工业大学, 2018.
17 Quan D Z. Study on performance of cold recyeling mixture with emulsified asphalt. Master's Thesis, Chang’an University, China, 2009 (in Chinese).
权登州. 乳化沥青冷再生混合料技术性能研究. 硕士学位论文, 长安大学, 2009.
18 Rinaldini E, Schuetz P, Parti M N, et al. Composites Part B, 2014, 67(12), 579.
19 Deng X Q. Plant mix reeycled bituminous grading design reseach. Master's Thesis, Chang’an University, China, 2007(in Chinese).
邓晓青. 厂拌热再生沥青混合料配比设计研究. 长安大学, 2007.
20 Cheng Z Q, Chen X Y, Chen H Q, et al. Journal of Chongqing Jiaotong University (Natural Sciences), 2012, 31(6), 1149(in Chinese).
成志强, 陈先勇, 陈辉强, 等. 重庆交通大学学报(自然科学版), 2012, 31(6), 1149.
21 Yang Y W, Ma T, Bian G J, et al. Journal of Building Materials, 2011, 14(3), 418(in Chinese).
杨毅文, 马涛, 卞国剑, 等. 建筑材料学报, 2011, 14(3), 418.
22 Zhou P L, Wang W S, Yu Z. Materials, 2021, 14(16), 4637.
23 Mangiafico S, Hervé Di Benedetto, Cédric Sauzéat, et al. Materials and Structures, 2015, 48(4), 1187.
24 Li F, Yan J H, Han P. Journal of China & Foreign Highway, 2016, 36(4), 273(in Chinese).
李锋, 严金海, 韩鹏. 中外公路, 2016, 36(4), 273.
25 Canestrari F, Santagata E. International Journal of Pavement Engineering, 2005, 6(1), 39.
26 Wang D C, Hao P W. Journal of Beijing University of Technology, 2020, 46(8), 963(in Chinese).
汪德才, 郝培文. 北京工业大学学报, 2020, 46(8), 963.
27 Wang D C, Hu X G, Song Y X . Applied Mechanics and Materials, 2014, 505-506, 265.
28 Zhang Q, Cai X, Wu K, et al. Construction and Building Materials, 2021, 300, 124049.
29 Wang H, Zhang R, Chen Y, et al. Construction & Building Materials, 2016, 121, 177.
30 Lopes M, Mouillet V, Bernucci L, et al. Construction & Building Materials, 2016, 124, 1120.
31 Zhang J, Zheng M, Pei J, et al. Materials, 2020, 13(14), 3176.
32 Kinloch A J, Cui S, Blackman B. International Journal of Adhesion & Adhesives, 2014, 54, 100.
33 Li H P, Zhao H, Liao K J, et al. Liquid Fuels Technology, 2012, 30(7), 699.
34 Wang Z J, Wang P, Guo H Y, et al. Advances in Materials Science and Engineering, 2020, 2020(2), 1.
35 Liu L. Surface characteristics and performance improvement of RAP. Master's Thesis, Chang’an University, China, 2016 (in Chinese).
刘亮. RAP表面特征及其性能改善研究. 硕士学位论文, 长安大学, 2016.
36 Wang P, Dong Z J, Tan Y Q, et al. China Journal of Highway and Transport, 2016, 29(3), 9(in Chinese).
王鹏, 董泽蛟, 谭忆秋, 等. 中国公路学报, 2016, 29(3), 9.
37 Huang M, Zhang H, Gao Y, et al. International Journal of Pavement Engineering, 2021, 22(3), 319.
38 Guan B, Zhang D P, Li Y, et al. Journal of Xi’an University of Architecture & Technology, 2017, 49(6), 919(in Chinese).
关泊, 张德鹏, 李雨, 等. 西安建筑科技大学学报(自然科学版), 2017, 49(6), 919.
39 Shi P C, Shen J N, Wei W. Highway, 2019, 64(3), 225(in Chinese).
石鹏程, 沈菊男, 魏伟. 公路, 2019, 64(3), 225.
40 Ding Y, Deng M, Cao X, et al. Construction and Building Materials, 2019, 221, 301.
41 Chen L, He Z Y, Chen H B, et al. China Journal of Highway and Transport, 2019, 32(3), 25(in Chinese).
陈龙, 何兆益, 陈宏斌, 等. 中国公路学报, 2019, 32(3), 25.
42 Qi W Y, Zhao J X. In:The 26th Civil Engineering Construction Techno-logy Exchange Meeting of Six Provinces and One City in East China. Hangzhou, China, 2020 (in Chinese).
祁文洋, 赵建新. 第26届华东六省一市土木建筑工程建造技术交流会. 杭州, 2020.
43 Hu G S, Wang X F, Yang B, et al. Journal of China & Foreign Highway, 2020, 40(2), 262(in Chinese).
胡光胜, 王笑风, 杨博, 等. 中外公路, 2020, 40(2), 262.
44 Yang C, Zhang J W, Yan F, et al. Journal of Cleaner Production, 2021, 317, 128278.
45 Khay S E, El E, Loulizi A, et al. Journal of Materials in Civil Engineering, 2015, 27(6), 04014192.
46 Xiao F, Amirkhanian S, Juang C H. Journal of Materials in Civil Engineering, 2007, 19(6), 475.
47 Ma F, Li X T, Fu Z. Materials Reports A:Review Papers, 2015, 29(13), 93(in Chinese).
马峰, 李晓彤, 傅珍. 材料导报:综述篇, 2015, 29(13), 93.
48 Li Y. Advanced Materials Research, 2013, 774-776, 1194.
49 Li H, Liu G, Dong B, et al. International Journal of Pavement Research and Technology, 2019, 12(3), 336.
50 Zhang Y S, Li W. Highways & Automotive Applications, 2018(2), 85(in Chinese).
张玉山, 栗威. 公路与汽运, 2018(2), 85.
51 Karlsson R, Isacsson U. Journal of Materials Science, 2003, 38(13), 2835.
52 Zhou Z G, Yang Y P, Zhang Q P, et al. Journal of Traffic and Transportation Engineering, 2011, 11(6), 10(in Chinese).
周志刚, 杨银培, 张清平, 等. 交通运输工程学报, 2011, 11(6), 10.
53 Lin Y J. Molecular dynamics study of diffusion behavior of virgin and recycled asphalt binders. Master's Thesis, Southeast University, China, 2019 (in Chinese).
林怡婧. 再生沥青中新旧沥青混溶过程的微观分析研究. 硕士学位论文, 东南大学, 2019.
54 Hao X Y, Tian Y G, Zhao C, et al. Journal of Functional Materials, 2021, 52(12), 12210.
郝肖雨, 田耀刚, 赵成, 等. 功能材料, 2021, 52(12), 12210.
55 Zhang H, Wang Z, Wang Q. Construction and Building Materials, 2020, 262, 120043.
56 Wang Z J, Wang R, Xiao J J, et al. Journal of Chongqing Jianzhu University, 2010, 32(5), 41(in Chinese).
王振军, 王瑞, 肖晶晶, 等. 土木建筑与环境工程, 2010, 32(5), 41.
57 Peng C, Chen P, You Z. et al. Construction & Building Materials, 2018, 169, 591.
58 Zhu C, Xu G, Zhang H, et al. Construction and Building Materials, 2018, 164, 317.
59 Nazirizad M, Kavussi A, Abdi A. Construction and Building Materials, 2015, 84, 348.
60 Dinis-Almeida M, Castro-Gomes J, Antunes M. Construction and Building Materials, 2011, 28(1), 687.
61 Xiao J J, Jiang W, Ye W L, et al. Construction and Building Materials, 2019, 220, 577.
62 Du S W, Wang Z J. Journal of Building Materials, 2009, 12(1), 71(in Chinese).
杜少文, 王振军. 建筑材料学报, 2009, 12(1), 71.
63 Wang Z J, Sha A M, Du S W. Highway, 2008(11), 186(in Chinese).
王振军, 沙爱民, 杜少文, 等. 公路, 2008(11), 186.
64 Pais J C, Santos C R G, Lo Presti D. Road Materials and Pavement Design, 2022,23, 2353.
65 Wang Z G. Highway Engineering, 2016, 41(6), 262(in Chinese).
王志刚. 公路工程, 2016, 41(6), 262.
66 Liu Y, Zhang Z, Tan L, et al. Journal of Cleaner Production, 2020, 274, 123116.
67 Lyu S T, Fan X Y, Yao H, et al. Journal of Applied Polymer Science, 2018, 136(1), 46903.
68 Huang H F. Research on performance of buton rock asphalt and modified mixture. Master's Thesis, Jilin University, China, 2015 (in Chinese).
黄昊飞. 布敦岩沥青及其混合料性能研究. 硕士学位论文, 吉林大学, 2015.
69 Sun H, Zhang L, Cui X Z. Journal of China & Foreign Highway, 2015, 35(1), 275(in Chinese).
孙辉, 张林, 崔行周. 中外公路, 2015, 35(1), 275.
70 Jing L, Guo X, Jiang Y, et al. Journal of Computational & Theoretical Nanoscience, 2015, 12(9), 2751.
[1] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[2] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[3] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[4] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[5] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[6] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[7] 田青, 屈孟娇, 祁帅, 姚田帅, 张苗, 许鸽龙, 邓德华. 低强型水泥乳化沥青砂浆抗压强度的计算模型[J]. 材料导报, 2022, 36(22): 21040170-5.
[8] 虞将苗, 马远跃, 张园, 于华洋, 邹桂莲. 高粘SBS改性乳化沥青就地冷再生混合料抗裂性能评价[J]. 材料导报, 2022, 36(16): 22040412-7.
[9] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[10] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[11] 张苗, 田青, 屈孟娇, 祁帅, 姚田帅, 许鸽龙, 邓德华. 水泥乳化沥青砂浆应力-应变本构关系的研究[J]. 材料导报, 2022, 36(15): 21010104-5.
[12] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[13] 向鑫, 杨飞龙, 张桂凯, 胡立, 宋雅琪, 朱力桂. 管件内壁电沉积涂层技术的研究进展[J]. 材料导报, 2022, 36(13): 20100118-7.
[14] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[15] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed