Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 20100280-7    https://doi.org/10.11896/cldb.20100280
  无机非金属及其复合材料 |
金属阳离子掺杂对羟基磷灰石微球性能的影响
李水源1, 徐镇宇1, 李克1,*, 周奎1,2,*
1 南昌大学先进制造学院,南昌 330031
2 南昌大学南昌市三维生物制造技术及装备重点实验室,南昌 330031
Effect of Metal Cation Doping on Properties of Hydroxyapatite Microspheres
LI Shuiyuan1, XU Zhenyu1, LI Ke1,*, ZHOU Kui1,2,*
1 School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
2 Nanchang Municipal Key Laboratory of 3D Bioprinting Technology and Equipment, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 39902KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 金属离子掺杂能给羟基磷灰石赋予独特的性能,如磁性、抗菌性、骨诱导性等。本工作采用气动挤出打印法制备了毫米级羟基磷灰石-海藻酸钠复合微球,然后用二价金属阳离子(Ca2+、Sr2+、Cu2+、Zn2+)交联复合微球并烧结实现金属阳离子的掺杂,详细研究了不同离子掺杂对微球性能(宏微观结构、物理化学性能和生物学性能)的影响。结果表明,不同离子掺杂对羟基磷灰石性能的影响存在一定的差异。四种离子对微球宏观形貌的影响不大,但是铜和锌的存在可促进HA在烧结过程中向β-TCP相的分解,导致微球的降解速率提高。5%Cu-HA-1200和5%Zn-HA-1200微球抑菌率显著高于5%Ca-HA-1200、5%Sr-HA-1200微球。细胞在四种微球表面生长良好。本研究获得的HA/β-TCP双相微球有望在骨缺损修复领域得到应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李水源
徐镇宇
李克
周奎
关键词:  羟基磷灰石  金属阳离子掺杂  气动挤压打印  烧结    
Abstract: Metal ion doping can give hydroxyapatite unique properties, such as magnetism, antibacterial property, bone inductivity, etc. The millimeter-scale hydroxyapatite-sodium alginate (HA-SA) composite microspheres were made by pneumatic extrusion printing, and cross-linked by divalent metal cations (Ca, Sr, Cu and Zn). The effect of different ion doping on the properties of microspheres (macro and micro structure, physical and chemical properties, and biological properties) was studied in detail. The results show that there are some differences in the effect of different ion doping on the performance of HA. These four inos have little effect on the macroscopic morphology of the microspheres, but the presence of Cu and Zn promote the decomposition of HA into β-TCP during the sintering process, leading to the increase of the degradation rate of the microspheres. The antibacterial rate of 5% Cu-HA-1200 and 5% Zn-HA-1200 microspheres are significantly higher than 5% Ca-HA-1200 and 5% Sr-HA-1200. HA/β-TCP biphasic spheroid is obtained in this research and these spheroids may be beneficial for bone defect repair.
Key words:  hydroxyapatite    metal cation doping    pneumatic extrusion printing    sintering
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TB321  
基金资助: 国家自然科学基金(32001017;51665036;31960207)
通讯作者:  * 李克,南昌大学教授,博士研究生导师,上海交通大学博士。主要从事金属凝固理论与技术、计算材料学、新能源材料、生物材料方面的研究。发表论文80余篇(其中SCI、EI收录52篇),授权发明专利10项。like.1@126.com
周奎,南昌大学副教授,硕士研究生导师,2012年毕业于武汉大学获学士学位,2016年毕业于华中科技大学获博士学位。长期从事3D打印技术及其在生物医学应用相关的研究,发表研究论文20余篇。zhoukui@ncu.edu.cn   
作者简介:  李水源,南昌大学材料加工工程专业18级硕士研究生。研究方向为生物材料的3D打印。
引用本文:    
李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
LI Shuiyuan, XU Zhenyu, LI Ke, ZHOU Kui. Effect of Metal Cation Doping on Properties of Hydroxyapatite Microspheres. Materials Reports, 2023, 37(7): 20100280-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.20100280  或          https://www.mater-rep.com/CN/Y2023/V37/I7/20100280
1 Eliaz N, Metoki N. Materials, 2017, 10(4), 334.
2 Sun T, Zhou K, Liu M, et al. Journal of Tissue Engineering and Rege-nerative Medicine, 2018, 12(4), 864.
3 Nie J, Zhou J, Huang X, et al. Ceramics International, 2019, 45(11), 13647.
4 Bellucci D, Cannillo V, Sola A. International Journal of Applied Ceramic Technology, 2012, 9(3), 455.
5 Chu T M G, Orton D G, Hollister S J, et al. Biomaterials, 2002, 23(5), 1283.
6 Zhou K, Zhang X, Chen Z, et al. Ceramics International, 2015, 41(10), 14029.
7 Liang T, Wu J, Li F, et al. Journal of Biomedical Materials Research Part A, 2021, 109(2), 219.
8 Gholizadeh B S, Buazar F, Hosseini S M, et al. International Journal of Biological Macromolecules, 2018, 116, 786.
9 Zhang J, Wang Q, Wang A. Acta biomaterialia, 2010, 6(2), 445.
10 Uysal I, Severcan F, Tezcaner A, et al. Progress in Natural Science:Materials International, 2014, 24(4), 340.
11 Chi W, Zou J, Ai F, et al. Materials, 2019, 12(11), 1769.
12 Oryan A, Baghaban E M, Kamali A, et al. Journal of Biome-dical Materials Research Part B:Applied Biomaterials, 2019, 107(1), 50.
13 Marques C F, Olhero S, Abrantes J C C, et al. Ceramics International, 2017, 43(17), 15719.
14 Iqbal N, Kadir M R A, Mahmood N H, et al. Ceramics International, 2014, 40(3), 4507.
15 Ofudje E A, Adeogun A I, Idowu M A, et al. Heliyon, 2019, 5(5), e01716.
16 Webler G D, Correia A C C, Barreto E, et al. Materials Chemistry and Physics, 2015, 162, 177.
17 Kanasan N, Adzila S, Koh C T, et al. Advances in Applied Ceramics, 2019, 118(7), 381.
18 Aina V, Lusvardi G, Annaz B, et al. Journal of Materials Science:Materials in Medicine, 2012, 23(12), 2867.
19 Cacciotti I, Bianco A, Lombardi M, et al. Journal of the European Ceramic Society, 2009, 29(14), 2969.
20 Cuozzo R C, Da Rocha Leão M H M , de Andrade Gobbo L, et al. Ceramics International, 2014, 40(7, Part B), 11369.
21 Ai F, Yan J, Ruan H, et al. Ceramics International, 2019, 45(13), 16399.
22 Chadha R K, Singh K L, Sharma C, et al. Ceramics International, 2020, 46(1), 1091.
23 Zhou K, Dong C, Zhang X, et al. Ceramics International, 2015, 41(1, Part B), 1671.
24 Hsu Y K, Yu C H, Chen Y C, et al. RSC Advances, 2012, 2(32), 12455.
25 Lukić M J, Veselinović L, Stevanović M, et al. Materials Letters, 2014, 122, 296.
26 Youness R A, Taha M A, Ibrahim M A. Journal of Molecular Structure, 2017, 1150(188.
27 Ye H, Liu X Y, Hong H. Journal of Materials Science:Materials in Medicine, 2009, 20(4), 843.
28 Shanmugam S, Gopal B. Ceramics International, 2014, 40(10, Part A), 15655.
29 Chen J, Wang Y, Chen X, et al. Materials Letters, 2011, 65(12), 1923.
30 Liu B, Lun D X. Orthopaedic Surgery, 2012, 4(3), 139.
31 Seo D S, Lee J K. Annals of Biomedical Engineering, 2008, 36(1), 132.
32 Stanić V, Dimitrijević S, Antić-Stanković J, et al. Applied Surface Science, 2010, 256(20), 6083.
33 Yamaguchi K, Hirano T, Yoshida G, et al. Biomaterials, 1995, 16(13), 983.
34 Shen Y, Liu W, Wen C, et al. Journal of Materials Chemistry, 2012, 22(17), 8662.
[1] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[2] 田广科, 陆中砥, 柴培钊, 王瑜, 许亿, 夏原. 重稀土晶界扩散工艺制备高矫顽力钕铁硼磁体研究进展与应用现状[J]. 材料导报, 2025, 39(6): 24040174-6.
[3] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[4] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[5] 刘庆, 欧阳雪琼, 刘文财, 吕洋, 王双喜. 流延工艺制备氧化锆燃料电池薄膜的研究进展[J]. 材料导报, 2025, 39(10): 24020149-10.
[6] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[7] 黄旭锐, 余喻天, 雷金勇, 郝敬轩, 俞传鑫, 潘军, 杨怡萍, 廖梓豪, 关成志, 王建强. 导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用[J]. 材料导报, 2024, 38(8): 23040278-4.
[8] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[9] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[10] 万胤辰, 王匀, 李瑞涛, 徐磊, 于超, 顾宇佳. 无压烧结工艺对浆料直写式定向多孔铜组织及致密度的影响[J]. 材料导报, 2024, 38(3): 22040202-6.
[11] 周卫新, 娄朝刚. 放电等离子烧结Ce、Yb共掺钇铝石榴石稀土荧光粉及其在光伏电池中的应用[J]. 材料导报, 2024, 38(22): 24040014-5.
[12] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[13] 周英伟, 樊玉鹏, 于瑞龙, 谭锐, 马月婷, 王鹏伟, 尹绍奎. 选择性激光烧结用聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(19): 23020110-9.
[14] 顾强, 马渭奎, 钱凡, 刘国齐, 李红霞. 洁净金属冶炼用CaO材料的防水化措施及作用机理[J]. 材料导报, 2024, 38(14): 23050050-7.
[15] 呼丹明, 段锋, 丁冬海, 李杰, 尹育航, 彭凯. 不烧滑板磨削加工用Fe-Ni-Cu-Sn金属基金刚石工具的制备与性能[J]. 材料导报, 2024, 38(10): 22100199-7.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[5] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[6] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed