Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 20100280-7    https://doi.org/10.11896/cldb.20100280
  无机非金属及其复合材料 |
金属阳离子掺杂对羟基磷灰石微球性能的影响
李水源1, 徐镇宇1, 李克1,*, 周奎1,2,*
1 南昌大学先进制造学院,南昌 330031
2 南昌大学南昌市三维生物制造技术及装备重点实验室,南昌 330031
Effect of Metal Cation Doping on Properties of Hydroxyapatite Microspheres
LI Shuiyuan1, XU Zhenyu1, LI Ke1,*, ZHOU Kui1,2,*
1 School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
2 Nanchang Municipal Key Laboratory of 3D Bioprinting Technology and Equipment, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 39902KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属离子掺杂能给羟基磷灰石赋予独特的性能,如磁性、抗菌性、骨诱导性等。本工作采用气动挤出打印法制备了毫米级羟基磷灰石-海藻酸钠复合微球,然后用二价金属阳离子(Ca2+、Sr2+、Cu2+、Zn2+)交联复合微球并烧结实现金属阳离子的掺杂,详细研究了不同离子掺杂对微球性能(宏微观结构、物理化学性能和生物学性能)的影响。结果表明,不同离子掺杂对羟基磷灰石性能的影响存在一定的差异。四种离子对微球宏观形貌的影响不大,但是铜和锌的存在可促进HA在烧结过程中向β-TCP相的分解,导致微球的降解速率提高。5%Cu-HA-1200和5%Zn-HA-1200微球抑菌率显著高于5%Ca-HA-1200、5%Sr-HA-1200微球。细胞在四种微球表面生长良好。本研究获得的HA/β-TCP双相微球有望在骨缺损修复领域得到应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李水源
徐镇宇
李克
周奎
关键词:  羟基磷灰石  金属阳离子掺杂  气动挤压打印  烧结    
Abstract: Metal ion doping can give hydroxyapatite unique properties, such as magnetism, antibacterial property, bone inductivity, etc. The millimeter-scale hydroxyapatite-sodium alginate (HA-SA) composite microspheres were made by pneumatic extrusion printing, and cross-linked by divalent metal cations (Ca, Sr, Cu and Zn). The effect of different ion doping on the properties of microspheres (macro and micro structure, physical and chemical properties, and biological properties) was studied in detail. The results show that there are some differences in the effect of different ion doping on the performance of HA. These four inos have little effect on the macroscopic morphology of the microspheres, but the presence of Cu and Zn promote the decomposition of HA into β-TCP during the sintering process, leading to the increase of the degradation rate of the microspheres. The antibacterial rate of 5% Cu-HA-1200 and 5% Zn-HA-1200 microspheres are significantly higher than 5% Ca-HA-1200 and 5% Sr-HA-1200. HA/β-TCP biphasic spheroid is obtained in this research and these spheroids may be beneficial for bone defect repair.
Key words:  hydroxyapatite    metal cation doping    pneumatic extrusion printing    sintering
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TB321  
基金资助: 国家自然科学基金(32001017;51665036;31960207)
通讯作者:  * 李克,南昌大学教授,博士研究生导师,上海交通大学博士。主要从事金属凝固理论与技术、计算材料学、新能源材料、生物材料方面的研究。发表论文80余篇(其中SCI、EI收录52篇),授权发明专利10项。like.1@126.com
周奎,南昌大学副教授,硕士研究生导师,2012年毕业于武汉大学获学士学位,2016年毕业于华中科技大学获博士学位。长期从事3D打印技术及其在生物医学应用相关的研究,发表研究论文20余篇。zhoukui@ncu.edu.cn   
作者简介:  李水源,南昌大学材料加工工程专业18级硕士研究生。研究方向为生物材料的3D打印。
引用本文:    
李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
LI Shuiyuan, XU Zhenyu, LI Ke, ZHOU Kui. Effect of Metal Cation Doping on Properties of Hydroxyapatite Microspheres. Materials Reports, 2023, 37(7): 20100280-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100280  或          http://www.mater-rep.com/CN/Y2023/V37/I7/20100280
1 Eliaz N, Metoki N. Materials, 2017, 10(4), 334.
2 Sun T, Zhou K, Liu M, et al. Journal of Tissue Engineering and Rege-nerative Medicine, 2018, 12(4), 864.
3 Nie J, Zhou J, Huang X, et al. Ceramics International, 2019, 45(11), 13647.
4 Bellucci D, Cannillo V, Sola A. International Journal of Applied Ceramic Technology, 2012, 9(3), 455.
5 Chu T M G, Orton D G, Hollister S J, et al. Biomaterials, 2002, 23(5), 1283.
6 Zhou K, Zhang X, Chen Z, et al. Ceramics International, 2015, 41(10), 14029.
7 Liang T, Wu J, Li F, et al. Journal of Biomedical Materials Research Part A, 2021, 109(2), 219.
8 Gholizadeh B S, Buazar F, Hosseini S M, et al. International Journal of Biological Macromolecules, 2018, 116, 786.
9 Zhang J, Wang Q, Wang A. Acta biomaterialia, 2010, 6(2), 445.
10 Uysal I, Severcan F, Tezcaner A, et al. Progress in Natural Science:Materials International, 2014, 24(4), 340.
11 Chi W, Zou J, Ai F, et al. Materials, 2019, 12(11), 1769.
12 Oryan A, Baghaban E M, Kamali A, et al. Journal of Biome-dical Materials Research Part B:Applied Biomaterials, 2019, 107(1), 50.
13 Marques C F, Olhero S, Abrantes J C C, et al. Ceramics International, 2017, 43(17), 15719.
14 Iqbal N, Kadir M R A, Mahmood N H, et al. Ceramics International, 2014, 40(3), 4507.
15 Ofudje E A, Adeogun A I, Idowu M A, et al. Heliyon, 2019, 5(5), e01716.
16 Webler G D, Correia A C C, Barreto E, et al. Materials Chemistry and Physics, 2015, 162, 177.
17 Kanasan N, Adzila S, Koh C T, et al. Advances in Applied Ceramics, 2019, 118(7), 381.
18 Aina V, Lusvardi G, Annaz B, et al. Journal of Materials Science:Materials in Medicine, 2012, 23(12), 2867.
19 Cacciotti I, Bianco A, Lombardi M, et al. Journal of the European Ceramic Society, 2009, 29(14), 2969.
20 Cuozzo R C, Da Rocha Leão M H M , de Andrade Gobbo L, et al. Ceramics International, 2014, 40(7, Part B), 11369.
21 Ai F, Yan J, Ruan H, et al. Ceramics International, 2019, 45(13), 16399.
22 Chadha R K, Singh K L, Sharma C, et al. Ceramics International, 2020, 46(1), 1091.
23 Zhou K, Dong C, Zhang X, et al. Ceramics International, 2015, 41(1, Part B), 1671.
24 Hsu Y K, Yu C H, Chen Y C, et al. RSC Advances, 2012, 2(32), 12455.
25 Lukić M J, Veselinović L, Stevanović M, et al. Materials Letters, 2014, 122, 296.
26 Youness R A, Taha M A, Ibrahim M A. Journal of Molecular Structure, 2017, 1150(188.
27 Ye H, Liu X Y, Hong H. Journal of Materials Science:Materials in Medicine, 2009, 20(4), 843.
28 Shanmugam S, Gopal B. Ceramics International, 2014, 40(10, Part A), 15655.
29 Chen J, Wang Y, Chen X, et al. Materials Letters, 2011, 65(12), 1923.
30 Liu B, Lun D X. Orthopaedic Surgery, 2012, 4(3), 139.
31 Seo D S, Lee J K. Annals of Biomedical Engineering, 2008, 36(1), 132.
32 Stanić V, Dimitrijević S, Antić-Stanković J, et al. Applied Surface Science, 2010, 256(20), 6083.
33 Yamaguchi K, Hirano T, Yoshida G, et al. Biomaterials, 1995, 16(13), 983.
34 Shen Y, Liu W, Wen C, et al. Journal of Materials Chemistry, 2012, 22(17), 8662.
[1] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[2] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[3] 付鹏程, 肖国庆, 丁冬海, 方宇飞, 种小川, 朱现峰. 高压电瓷废料制备低密度高强度陶粒支撑剂及其性能[J]. 材料导报, 2022, 36(4): 21010085-5.
[4] 李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
[5] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[6] 刘琛, 李勇, 周文, 吴宜勇, 王岩, 吴跃民, 王芳, 琚丹丹, 闫继宏. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122-7.
[7] 吴江松, 谭彦妮, 刘晏军. 羟基磷灰石在传感领域应用的研究进展[J]. 材料导报, 2022, 36(20): 20090296-13.
[8] 孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
[9] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[10] 宋欢欢, 赵鸣, 崔文正, 刘卓承, 陈华, 杜永胜. SnO2对低温烧结ZnBiMnNbO基高压压敏陶瓷的影响[J]. 材料导报, 2022, 36(17): 21030033-5.
[11] 刘全, 孙红娟, 彭同江, 王璨. 烧结温度对石棉矿山废石制备微晶玻璃析晶性能的影响[J]. 材料导报, 2022, 36(15): 21040122-5.
[12] 安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
[13] 叶东东, 徐子芳, 赵怡梵, 俞欣欣, 傅宇豪. 电解锰渣陶粒共烧结温度影响机理研究[J]. 材料导报, 2022, 36(11): 21120242-6.
[14] 张雪, 王进, 罗萍, 刘蝶, 詹磊, 魏玉锋, 王军霞. NZP型磷酸盐陶瓷固化模拟放射性核素Sr2+/Sm3+的研究[J]. 材料导报, 2022, 36(1): 20090353-10.
[15] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed