Abstract: Ultra-high performance concrete (UHPC) has exceptional mechanical properties and durability, which offers that for broad exploitations such as composite members and structural reinforcement. Among various raised technical issues, the interfacial bonding performance between the UHPC and existing normal concrete (NC) signifies a very crucial one. This paper summarizes the research progress of the UHPC-NC on the interface bonding performance test methods, calculation formulas of the interfacial shear strength, influencing factors, and interface durability at home and abroad. The shortcomings of this test for the UHPC-NC are introduced and explained, and the applicability of formulas for evaluating the interfacial shear strength in various specifications pertinent to the UHPC-NC is explored. The effects of various factors on the UHPC-NC interface bonding performance are also analyzed, including fiber, interface roughness, interface moisture content, bonding agent, the strength of existing concrete, cementitious material, and curing system. The strengthening mechanism of the interface characteristics is expounded, and the current research on durability is discussed. The obtained results reveal that the interfacial bonding strength of the UHPC-NC is excellent, in which the appropriate curing system and fiber can reduce the shrinkage of the UHPC and enhance the compatibility between materials. The growth of the interface roughness and existing concrete strength can effectively avoid interface failure. Bonding agents, cementitious material and appropriate interfacial moisture content can improve the interfacial transition zone. The UHPC-NC interface exhibits good impermeability and freeze-thaw resistance.
1 Chen Baochun, Ji Tao, Huang Qingwei, et al. Journal of Architecture and Civil Engineer, 2014, 31(3), 1 (in Chinese). 陈宝春, 季韬, 黄卿维, 等. 建筑科学与工程学报, 2014, 31(3), 1. 2 Wang Dehui, Shi Caijun, Wu Linmei. Bulletin of the Chinese Ceramic Society, 2016, 35(1), 141 (in Chinese). 王德辉, 史才军, 吴林妹. 硅酸盐通报, 2016, 35(1), 141. 3 Huang Wei. Effect of supplementary cementitious material on the hydration and microstructural development of ultra-high performance concrete. Ph.D. Thesis, Southeast University, China, 2017 (in Chinese). 黄伟. 矿物掺合料对超高性能混凝土的水化及微结构形成的影响. 博士学位论文, 东南大学, 2017. 4 Baqersad M, Sayyafi E A, Bak H M. Civil Engineering Journal, 2017, 3(3), 190. 5 Hu Yuan. The axial compressive performance study of reactive powder concrete precast tube concrete composite columns. Master's Thesis, Hunan University, China, 2015 (in Chinese). 胡源. 活性粉末混凝土预制管混凝土组合柱轴心抗压性能研究. 硕士学位论文, 湖南大学, 2015. 6 Li V C. International Journal for Restoration, 2004, 10(2), 163. 7 Luo Xiaobing. Experimental study on concrete-filled RPC tube under axial compressive loading. Master's Thesis, Hunan University, China, 2017 (in Chinese). 罗校炳. RPC预制管混凝土组合短柱轴压性能试验研究. 硕士学位论文, 湖南大学, 2017. 8 Wen Shuai. Numerical study on seismic performance of a novel type of high-strength reinforced UHPC-NC composite column. Master's Thesis, East China Jiaotong University, China, 2020 (in Chinese). 温帅. 新型高强钢筋增强UHPC-NC组合柱抗震性能数值研究. 硕士学位论文, 华东交通大学, 2020. 9 Teng T, Sy B, Jwa B, et al. Composite Structures, 2021, 255. 10 Liu Chao, Sun Qixin, Zou Yugang. Journal of Tongji University(Natural Science), 2020, 48(5), 664 (in Chinese). 刘超, 孙启鑫, 邹宇罡. 同济大学学报(自然科学版), 2020, 48(5), 664. 11 Semendary A A, Hamid W K, Steinberg E P, et al. Engineering Structures, 2020, 205, 110122.1. 12 Lee H S, Jang H O, Cho K H. Materials, 2016, 9(5), 362. 13 Huo Shuya. The research on shaft pull performance of assembled NC components with UHPC wet joints. Master's Thesis, Hunan University, China, 2017 (in Chinese). 霍书亚. 装配式NC-UHPC湿接缝轴拉性能研究. 硕士学位论文, 湖南大学, 2019. 14 Haber Z B, Munoz J F, Igor D, et al. Construction and Building Mate-rials, 2018, 190, 1056. 15 Gu C P, Ye G, Sun W. Science China Technological Sciences, 2015, 58(4), 587. 16 Caluk N, Mantawy I, Azizinamini A. Infrastructures, 2019, 4(2), 25. 17 Sun Hangxing, Zhou Jianting, Xu Anqi, et al. Concrete, 2020(1), 136 (in Chinese). 孙航行, 周建庭, 徐安祺, 等. 混凝土, 2020(1), 136. 18 Liu Zhen. Reactive powder concrete technology and its application in anti-collision wall. Master's Thesis, Shenyang Jianzhu University, China, 2019 (in Chinese). 刘镇. 活性粉末混凝土技术及其在防撞墙的应用研究. 硕士学位论文, 沈阳建筑大学, 2019. 19 Saucier F, Bastien J, Pigeon M, et al. Experimental Techniques, 2010, 15(5), 50. 20 Zhou Jianting, Zhou Lu, Yang Jun. Journal of Jiangsu University(Na-tural Science Edition), 2020, 41(4), 373 (in Chinese). 周建庭, 周璐, 杨俊, 等. 江苏大学学报(自然科学版), 2020, 41(4), 373. 21 Ren Liang, Fang Xun, Wang Kai. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2087 (in Chinese). 任亮, 方蕈, 王凯, 等. 硅酸盐通报, 2019, 38(7), 2087. 22 Feng Zheng, Li Chuanxi, Li Haichun, et al. Journal of the Chinese Ceramic Society, 2021(11), 1 (in Chinese). 冯峥, 李传习, 李海春, 等. 硅酸盐学报, 2021(11), 1. 23 Zhang Y, Zhu P, Liao Z, et al. Construction and Building Materials, 2020, 235, 117431. 24 Hussein H H, Walsh K K, Sargan D S M, et al. Journal of Materials in Civil Engineering, 2016, 28(5), 04015208. 1. 25 Momayez A, Ehsani M R, Ramezanianpour A A, et al. Cement and Concrete Research, 2005, 35(4), 748. 26 Carbonell Muñoz M A, Harris D K, Ahlborn T M, et al. Journal of Materials in Civil Engineering, 2014, 26(8), 04014031. 27 Bonaldo E, Barros J, Lourenco P B. International Journal of Adhesion and Adhesives, 2005, 25(6), 463. 28 Valipour M, Khayat K H. Materials and Structures, 2020, 53(1), 1. 29 Tayeh B A, Bakar B A, Johari M M, et al. Journal of Adhesion Science and Technology, 2014, 28(18), 1846. 30 Baloch W L, Siad H, Lachemi M, et al. Journal of Building Enginee-ring, 2021, 44, 103315. 31 Mansour W, Fayed S. Structures, 2021, 29, 147. 32 Fan J, Wu L, Zhang B. Materials, 2021, 14(5), 1057. 33 Tayeh B A, Bakar B A, Johari M M, et al. Advanced Materials Research, 2013, 701, 32. 34 Huo Wenbing, Zhang Yang, Huang Longtian. Journal of Building Mate-rials, 2021, 24(3), 525 (in Chinese). 霍文斌, 张阳, 黄龙田, 等. 建筑材料学报, 2021, 24(3), 525. 35 Xu Jianming, Chen Yong, Liu Xiaofan, et al. Journal of Architecture and Civil Engineering, 2021, 38(4), 44 (in Chinese). 许建明, 陈勇, 刘骁繁, 等. 建筑科学与工程学报, 2021, 38(4), 44. 36 Li B, Lam E. Construction and Building Materials, 2018, 176, 462. 37 Zhou Jianting, Hu Tianxiang, Yang Jun, et al. Material Reports, 2021, 35(16), 16050 (in Chinese). 周建庭, 胡天祥, 杨俊, 等. 材料导报, 2021, 35(16), 16050. 38 Valikhnai A, Jahromi A J, Mantawy I M, et al. Construction and Buil-ding Materials, 2019, 238, 117753. 39 Guan D, Liu J, Jiang C, et al. Structures, 2021, 31(4), 172. 40 Javidmehr S, Empelmann M. Sustainability, 2021, 13(15), 8229. 41 Wu Xiangguo, Zhang Xiaochen. Journal of Building Structures, 2018, 39(10), 156 (in Chinese). 吴香国, 张孝臣. 建筑结构学报, 2018, 39(10), 156. 42 Momayez A, Ramezanianpour A A, Rajaie H, et al. ACI Materials Journal, 2004, 101(2), 99. 43 Yuan S, Liu Z, Tong T. Structures, 2020, 28(6), 2617. 44 Austin S, Robins P, Pan Y. Cement and Concrete Research, 1999, 29(7), 1067. 45 Harris D K, MAC Muñoz, Gheitasi A, et al. Advances in Civil Enginee-ring Materials, 2014, 4(2), 20140034. 46 Santos P, Julio E N B S. Engineering Structures, 2012, 45(12), 435. 47 AASHTO (2005) LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials (AASHTO), USA. 48 ACI Committee 318. Building code requirements for structural concrete and commentary (ACI 318-14), American Concrete Institute, USA, 2014. 49 European Committee for Standardization(CEN). Eurocode 2: Design of Concrete Structures. General rules and rules for buildings, 2008. 50 Comité Euro-International du Beton (CEB-FIP). Structural concrete: textbook on behaviour, design and performance, International Federation for Structural Concrete (Fib), Switzerland, 2010. 51 Code for design of concrete structures: GB 50010-2010. China Architecture and Building Press, China, 2010 (in Chinese). 混凝土结构设计规范: GB 50010-2010. 中国建筑工业出版社, 2010. 52 Wang Dehong, Shen Tong, Ju Yanzhong, et al. Journal of Building Structures, 2020,41(S2), 41 (in Chinese). 王德弘, 沈彤, 鞠彦忠, 等. 建筑结构学报, 2020, 41(S2), 411. 53 Al-Madani M K, Al-Osta M A, Ahmad S, et al. Construction and Buil-ding Materials, 2022, 320, 126229. 54 Yuan S, Liu Z, Tong T, et al. Journal of Materials in Civil Engineering, 2022, 34(1), 04021398. 55 Zanotti C, Banthia N, Plizzari G. Cement and Concrete Research, 2014, 63(9), 117. 56 Jang H O, Lee H S, Cho K, et al. Construction and Building Materials, 2017, 152, 16. 57 Masse M B, Denarié E, Brühwiler E. Cement and Concrete Composites, 2016, 67, 111. 58 Xie Huicai, Shen Yubin. China Civil Engineering Journal, 2003, 36(10), 15 (in Chinese). 谢慧才, 申豫斌. 土木工程学报, 2003, 36(10), 15. 59 Chen P W, Fu X L, Chung D D L. Cement and Concrete Research, 1995, 25(3), 491. 60 An Ning. Effect of interfacial properties on bonding behaviors of UHPC-NC. Master's Thesis, Beijing Jiaotong University, China, 2018 (in Chinese). 安宁. UHPC-NC界面特性对粘结性能的影响研究. 硕士学位论文, 北京交通大学, 2018. 61 Ju Y, Shen T, Wang D. Construction and Building Materials, 2020, 242, 118024. 62 Shen Jie. The study on bonding behaviors of reactive power concrete and ordinary concrete. Master's Thesis, Beijing Jiaotong University, China, 2016 (in Chinese). 沈捷. 活性粉末混凝土与普通混凝土的粘结性能研究. 硕士学位论文, 北京交通大学, 2016. 63 Hussein L, Amleh L. Construction and Building Materials, 2015, 93, 1105. 64 Tayeh B A, Bakar B, Johari M, et al. Procedia Engineering, 2013, 54, 554. 65 Wang Xinwang. Research on the interfacil shear behavior of UHPC and reinforced concrete. Master's Thesis, Hunan University, China, 2016 (in Chinese). 王兴旺. UHPC与普通钢筋混凝土结构界面抗剪性能研究. 硕士学位论文, 湖南大学, 2016. 66 Wu Jie. Experiment research on the interfacial shear behavior of UHPC-NC structure under the condition of normal curing temperature. Master's Thesis, Hunan University, China, 2017 (in Chinese). 吴洁. 常温养护条件下UHPC-NC结构界面抗剪性能试验研究. 硕士学位论文, 湖南大学, 2017. 67 Alhallaq A F, Tayeh B A, Shihada S. International Journal of Enginee-ring and Advanced Technology, 2017, 6(3), 210. 68 He Y, Zhang X, Hooton R D, et al. Construction and Building Materials, 2017, 151, 582. 69 Ganesh P, Murthy A R. Construction and Building Materials, 2020, 250, 118871. 70 Erhard D, Chorinsky G. Springer US, 1986, 230. 71 Lukovic M, Ye G. Materials, 2016, 9(1), 2. 72 De l V I, Munoz J F, Bentz D P, et al. Construction and Building Mate-rials, 2018, 170, 747. 73 Bentz D P, Varga I, Muñoz J F, et al. Cement and Concrete Composites, 2018, 87, 63. 74 De l V I, Haber Z B, Graybeal B A. Journal of Materials in Civil Engineering, 2018, 30(4), 04018053. 1. 75 Semendary A A, Svecova D. Engineering Structures, 2020, 216. 76 Farzad M, Shafieifar M, Azizinamini A. Engineering Structures, 2019, 186, 297. 77 Beushausen H, Höhlig B, Talotti M. Cement and Concrete Research, 2017, 92, 84. 78 Ji Wenyu, Guo Minlong, Li Wangwang. China Railway Science, 2016, 37(1), 46 (in Chinese). 季文玉, 过民龙, 李旺旺. 中国铁道科学, 2016, 37(1), 46. 79 Jia Fangfang, He Kui, Wang Wanjin, et al. Journal of the China Railway Society, 2016, 38(3), 127 (in Chinese). 贾方方, 贺奎, 王万金, 等. 铁道学报, 2016, 38(3), 127. 80 Li X, Xu Q, Chen S. Construction and Building Materials, 2016, 105, 503. 81 Peng Q, Xu Q. Construction and Building Materials, 2018, 174, 120. 82 Gallaher B L. Evaluation of thin bonded overlays as a protective system for highway bridge decks. Master's Thesis, University of Colorado at Boulder, USA, 2013. 83 Li Pingxian, Zhang Leishun, Zhao Guofang, et al. Journal of Hydraulic Engineering, 2005, 36(5), 602 (in Chinese). 李平先, 张雷顺, 赵国藩, 等. 水利学报, 2005, 36(5), 602. 84 Gao Danying, Cheng Hongqiang, Feng Hu. Journal of Hydroelectric Engineering, 2009, 28(1), 152 (in Chinese). 高丹盈, 程红强, 冯虎. 水力发电学报, 2009, 28(1), 152. 85 Tayeh B A, Baka B H A, Johari M, et al. Construction & Building Materials, 2012, 36, 538. 86 Farzad, Fancy, Lau, et al. Infrastructures, 2019, 4(2), 18. 87 Shu Chang. Characterization of interface transition zone and freezing/thawing effect of concrete by nanoscratch tests. Master's Thesis, Shanghai Jiao Tong University, China, 2015 (in Chinese). 舒畅. 混凝土界面过渡区和冻融耐久性纳米划痕表征研究. 硕士学位论文, 上海交通大学, 2015. 88 Li Pingxian, Zhao Guofang, Zhang Leishun. Journal of Building Structures, 2004, 25(5), 111 (in Chinese). 李平先, 赵国藩, 张雷顺. 建筑结构学报, 2004, 25(5), 111. 89 Li Pingxian, Zhang Leishun, Zhao Guofang. Journal of Hydraulic Engineering, 2005, 36(3), 339 (in Chinese). 李平先, 张雷顺, 赵国藩. 水利学报, 2005, 36(3), 339. 90 Gao Danying, Hu Liangming, Cheng Hongqiang. Journal of Hydroelectric Engineering, 2007, 26(6), 52 (in Chinese). 高丹盈, 胡良明, 程红强. 水力发电学报, 2007, 26(6), 52. 91 Gao Danying, Feng Hu. Industrial Construction, 2008, 38(3), 80 (in Chinese). 高丹盈, 冯虎. 工业建筑, 2008, 38(3), 80. 92 Xie Jian, Chen Yujie, Sun Yadan. Bulletin of the Chinese Ceramic Society, 2021, 40(12), 3945. 谢剑, 陈玉洁, 孙雅丹. 硅酸盐通报, 2021, 40(12), 3945. 93 Lee M G, Wang Y C, Chiu C T. Construction and Building Materials, 2007, 21(1), 182.