Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21120057-11    https://doi.org/10.11896/cldb.21120057
  无机非金属及其复合材料 |
超高性能混凝土-既有普通混凝土界面粘结性能研究综述
吴应雄, 郑新颜, 黄伟*, 郑祥浴, 陈宝春
福州大学土木工程学院, 福州 350108
Review of Interface Bond Behavior Between Ultra-high Performance Concrete and Existing Normal Concrete
WU Yingxiong, ZHENG Xinyan, HUANG Wei*, ZHENG Xiangyu, CHEN Baochun
College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 10330KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(Ultra-high performance concrete, UHPC)具有优异的力学性能和耐久性,被广泛应用于组合构件及结构加固中,其中,UHPC与既有普通混凝土(Existing normal concrete, NC)之间的界面粘结性能至关重要。本文综述了国内外UHPC-NC的界面粘结性能的试验方法及界面抗剪强度计算公式、影响因素与界面耐久性能的研究进展,指出了测试方法存在的不足,探究了不同规范的界面抗剪强度计算式对UHPC-NC的适用性,总结了不同因素对UHPC-NC界面粘结性能的影响,包括纤维、界面粗糙度、界面含水率、界面剂、既有混凝土强度、胶凝材料和养护制度等,阐述了其界面特性的增强机理,探讨了耐久性的现阶段研究。UHPC-NC具有优异的界面粘结强度,其中,合适的养护制度与纤维能够减少UHPC的收缩,增强材料之间相容性;界面粗糙度与既有混凝土强度的增加可以有效避免界面破坏;界面剂、胶凝材料及适当的界面含水率可以改善过渡区;UHPC-NC界面具有较好的抗渗透性能和抗冻融性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴应雄
郑新颜
黄伟
郑祥浴
陈宝春
关键词:  超高性能混凝土  既有普通混凝土  界面性能试验  影响因素  耐久性    
Abstract: Ultra-high performance concrete (UHPC) has exceptional mechanical properties and durability, which offers that for broad exploitations such as composite members and structural reinforcement. Among various raised technical issues, the interfacial bonding performance between the UHPC and existing normal concrete (NC) signifies a very crucial one. This paper summarizes the research progress of the UHPC-NC on the interface bonding performance test methods, calculation formulas of the interfacial shear strength, influencing factors, and interface durability at home and abroad. The shortcomings of this test for the UHPC-NC are introduced and explained, and the applicability of formulas for evaluating the interfacial shear strength in various specifications pertinent to the UHPC-NC is explored. The effects of various factors on the UHPC-NC interface bonding performance are also analyzed, including fiber, interface roughness, interface moisture content, bonding agent, the strength of existing concrete, cementitious material, and curing system. The strengthening mechanism of the interface characteristics is expounded, and the current research on durability is discussed. The obtained results reveal that the interfacial bonding strength of the UHPC-NC is excellent, in which the appropriate curing system and fiber can reduce the shrinkage of the UHPC and enhance the compatibility between materials. The growth of the interface roughness and existing concrete strength can effectively avoid interface failure. Bonding agents, cementitious material and appropriate interfacial moisture content can improve the interfacial transition zone. The UHPC-NC interface exhibits good impermeability and freeze-thaw resistance.
Key words:  ultra-high performance concrete    existing normal concrete    interfacial properties test    influencing factors    durability
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TU528  
  TU317.1  
基金资助: 福建省住建厅建设科技开发研究项目(2020-K-13);福建省自然科学基金(2021J05124);中国博士后科学基金(2020M671951);泉州市科技计划项目(2021N176S)
通讯作者:  *黄伟,福州大学土木工程学院助理研究员、硕士研究生导师。2010年7月本科毕业于重庆大学材料科学与工程学院,2017年7月在东南大学材料科学与工程专业经过东南大学孙伟院士与Karen Scrivener教授的联合培养下取得博士学位。2017年担任福州大学土木工程学院助理研究员、硕士研究生导师;2019年至今于垒知控股集团股份有限公司从事博士后研究。主要从事超高性能/超高延性水泥基复合材料、水泥水化及微结构演变、固体废弃物综合利用、混凝土海洋环境耐久性、高性能混凝土外加剂等相关研究工作。于Cement and Concrete Composites等国际重要刊物发表了多篇SCI等论文。WeiHuang@fzu.edu.cn   
作者简介:  吴应雄,福州大学土木工程学院教授、博士、博士研究生导师。2012年福州大学结构工程专业博士毕业。目前主要从事工程结构抗震、减隔震理论研究及工程应用、超高性能水泥基复合材料的加固应用等相关研究工作。主持和参与完成了国家自然科学基金3项、省部级科研项目5项;发表高水平学术论文40余篇,主编著作2部,发明新型实用专利10余项。现为第三届中国土木工程学会防震减灾工程分会理事。
引用本文:    
吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
WU Yingxiong, ZHENG Xinyan, HUANG Wei, ZHENG Xiangyu, CHEN Baochun. Review of Interface Bond Behavior Between Ultra-high Performance Concrete and Existing Normal Concrete. Materials Reports, 2023, 37(16): 21120057-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120057  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21120057
1 Chen Baochun, Ji Tao, Huang Qingwei, et al. Journal of Architecture and Civil Engineer, 2014, 31(3), 1 (in Chinese).
陈宝春, 季韬, 黄卿维, 等. 建筑科学与工程学报, 2014, 31(3), 1.
2 Wang Dehui, Shi Caijun, Wu Linmei. Bulletin of the Chinese Ceramic Society, 2016, 35(1), 141 (in Chinese).
王德辉, 史才军, 吴林妹. 硅酸盐通报, 2016, 35(1), 141.
3 Huang Wei. Effect of supplementary cementitious material on the hydration and microstructural development of ultra-high performance concrete. Ph.D. Thesis, Southeast University, China, 2017 (in Chinese).
黄伟. 矿物掺合料对超高性能混凝土的水化及微结构形成的影响. 博士学位论文, 东南大学, 2017.
4 Baqersad M, Sayyafi E A, Bak H M. Civil Engineering Journal, 2017, 3(3), 190.
5 Hu Yuan. The axial compressive performance study of reactive powder concrete precast tube concrete composite columns. Master's Thesis, Hunan University, China, 2015 (in Chinese).
胡源. 活性粉末混凝土预制管混凝土组合柱轴心抗压性能研究. 硕士学位论文, 湖南大学, 2015.
6 Li V C. International Journal for Restoration, 2004, 10(2), 163.
7 Luo Xiaobing. Experimental study on concrete-filled RPC tube under axial compressive loading. Master's Thesis, Hunan University, China, 2017 (in Chinese).
罗校炳. RPC预制管混凝土组合短柱轴压性能试验研究. 硕士学位论文, 湖南大学, 2017.
8 Wen Shuai. Numerical study on seismic performance of a novel type of high-strength reinforced UHPC-NC composite column. Master's Thesis, East China Jiaotong University, China, 2020 (in Chinese).
温帅. 新型高强钢筋增强UHPC-NC组合柱抗震性能数值研究. 硕士学位论文, 华东交通大学, 2020.
9 Teng T, Sy B, Jwa B, et al. Composite Structures, 2021, 255.
10 Liu Chao, Sun Qixin, Zou Yugang. Journal of Tongji University(Natural Science), 2020, 48(5), 664 (in Chinese).
刘超, 孙启鑫, 邹宇罡. 同济大学学报(自然科学版), 2020, 48(5), 664.
11 Semendary A A, Hamid W K, Steinberg E P, et al. Engineering Structures, 2020, 205, 110122.1.
12 Lee H S, Jang H O, Cho K H. Materials, 2016, 9(5), 362.
13 Huo Shuya. The research on shaft pull performance of assembled NC components with UHPC wet joints. Master's Thesis, Hunan University, China, 2017 (in Chinese).
霍书亚. 装配式NC-UHPC湿接缝轴拉性能研究. 硕士学位论文, 湖南大学, 2019.
14 Haber Z B, Munoz J F, Igor D, et al. Construction and Building Mate-rials, 2018, 190, 1056.
15 Gu C P, Ye G, Sun W. Science China Technological Sciences, 2015, 58(4), 587.
16 Caluk N, Mantawy I, Azizinamini A. Infrastructures, 2019, 4(2), 25.
17 Sun Hangxing, Zhou Jianting, Xu Anqi, et al. Concrete, 2020(1), 136 (in Chinese).
孙航行, 周建庭, 徐安祺, 等. 混凝土, 2020(1), 136.
18 Liu Zhen. Reactive powder concrete technology and its application in anti-collision wall. Master's Thesis, Shenyang Jianzhu University, China, 2019 (in Chinese).
刘镇. 活性粉末混凝土技术及其在防撞墙的应用研究. 硕士学位论文, 沈阳建筑大学, 2019.
19 Saucier F, Bastien J, Pigeon M, et al. Experimental Techniques, 2010, 15(5), 50.
20 Zhou Jianting, Zhou Lu, Yang Jun. Journal of Jiangsu University(Na-tural Science Edition), 2020, 41(4), 373 (in Chinese).
周建庭, 周璐, 杨俊, 等. 江苏大学学报(自然科学版), 2020, 41(4), 373.
21 Ren Liang, Fang Xun, Wang Kai. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2087 (in Chinese).
任亮, 方蕈, 王凯, 等. 硅酸盐通报, 2019, 38(7), 2087.
22 Feng Zheng, Li Chuanxi, Li Haichun, et al. Journal of the Chinese Ceramic Society, 2021(11), 1 (in Chinese).
冯峥, 李传习, 李海春, 等. 硅酸盐学报, 2021(11), 1.
23 Zhang Y, Zhu P, Liao Z, et al. Construction and Building Materials, 2020, 235, 117431.
24 Hussein H H, Walsh K K, Sargan D S M, et al. Journal of Materials in Civil Engineering, 2016, 28(5), 04015208. 1.
25 Momayez A, Ehsani M R, Ramezanianpour A A, et al. Cement and Concrete Research, 2005, 35(4), 748.
26 Carbonell Muñoz M A, Harris D K, Ahlborn T M, et al. Journal of Materials in Civil Engineering, 2014, 26(8), 04014031.
27 Bonaldo E, Barros J, Lourenco P B. International Journal of Adhesion and Adhesives, 2005, 25(6), 463.
28 Valipour M, Khayat K H. Materials and Structures, 2020, 53(1), 1.
29 Tayeh B A, Bakar B A, Johari M M, et al. Journal of Adhesion Science and Technology, 2014, 28(18), 1846.
30 Baloch W L, Siad H, Lachemi M, et al. Journal of Building Enginee-ring, 2021, 44, 103315.
31 Mansour W, Fayed S. Structures, 2021, 29, 147.
32 Fan J, Wu L, Zhang B. Materials, 2021, 14(5), 1057.
33 Tayeh B A, Bakar B A, Johari M M, et al. Advanced Materials Research, 2013, 701, 32.
34 Huo Wenbing, Zhang Yang, Huang Longtian. Journal of Building Mate-rials, 2021, 24(3), 525 (in Chinese).
霍文斌, 张阳, 黄龙田, 等. 建筑材料学报, 2021, 24(3), 525.
35 Xu Jianming, Chen Yong, Liu Xiaofan, et al. Journal of Architecture and Civil Engineering, 2021, 38(4), 44 (in Chinese).
许建明, 陈勇, 刘骁繁, 等. 建筑科学与工程学报, 2021, 38(4), 44.
36 Li B, Lam E. Construction and Building Materials, 2018, 176, 462.
37 Zhou Jianting, Hu Tianxiang, Yang Jun, et al. Material Reports, 2021, 35(16), 16050 (in Chinese).
周建庭, 胡天祥, 杨俊, 等. 材料导报, 2021, 35(16), 16050.
38 Valikhnai A, Jahromi A J, Mantawy I M, et al. Construction and Buil-ding Materials, 2019, 238, 117753.
39 Guan D, Liu J, Jiang C, et al. Structures, 2021, 31(4), 172.
40 Javidmehr S, Empelmann M. Sustainability, 2021, 13(15), 8229.
41 Wu Xiangguo, Zhang Xiaochen. Journal of Building Structures, 2018, 39(10), 156 (in Chinese).
吴香国, 张孝臣. 建筑结构学报, 2018, 39(10), 156.
42 Momayez A, Ramezanianpour A A, Rajaie H, et al. ACI Materials Journal, 2004, 101(2), 99.
43 Yuan S, Liu Z, Tong T. Structures, 2020, 28(6), 2617.
44 Austin S, Robins P, Pan Y. Cement and Concrete Research, 1999, 29(7), 1067.
45 Harris D K, MAC Muñoz, Gheitasi A, et al. Advances in Civil Enginee-ring Materials, 2014, 4(2), 20140034.
46 Santos P, Julio E N B S. Engineering Structures, 2012, 45(12), 435.
47 AASHTO (2005) LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials (AASHTO), USA.
48 ACI Committee 318. Building code requirements for structural concrete and commentary (ACI 318-14), American Concrete Institute, USA, 2014.
49 European Committee for Standardization(CEN). Eurocode 2: Design of Concrete Structures. General rules and rules for buildings, 2008.
50 Comité Euro-International du Beton (CEB-FIP). Structural concrete: textbook on behaviour, design and performance, International Federation for Structural Concrete (Fib), Switzerland, 2010.
51 Code for design of concrete structures: GB 50010-2010. China Architecture and Building Press, China, 2010 (in Chinese).
混凝土结构设计规范: GB 50010-2010. 中国建筑工业出版社, 2010.
52 Wang Dehong, Shen Tong, Ju Yanzhong, et al. Journal of Building Structures, 2020,41(S2), 41 (in Chinese).
王德弘, 沈彤, 鞠彦忠, 等. 建筑结构学报, 2020, 41(S2), 411.
53 Al-Madani M K, Al-Osta M A, Ahmad S, et al. Construction and Buil-ding Materials, 2022, 320, 126229.
54 Yuan S, Liu Z, Tong T, et al. Journal of Materials in Civil Engineering, 2022, 34(1), 04021398.
55 Zanotti C, Banthia N, Plizzari G. Cement and Concrete Research, 2014, 63(9), 117.
56 Jang H O, Lee H S, Cho K, et al. Construction and Building Materials, 2017, 152, 16.
57 Masse M B, Denarié E, Brühwiler E. Cement and Concrete Composites, 2016, 67, 111.
58 Xie Huicai, Shen Yubin. China Civil Engineering Journal, 2003, 36(10), 15 (in Chinese).
谢慧才, 申豫斌. 土木工程学报, 2003, 36(10), 15.
59 Chen P W, Fu X L, Chung D D L. Cement and Concrete Research, 1995, 25(3), 491.
60 An Ning. Effect of interfacial properties on bonding behaviors of UHPC-NC. Master's Thesis, Beijing Jiaotong University, China, 2018 (in Chinese).
安宁. UHPC-NC界面特性对粘结性能的影响研究. 硕士学位论文, 北京交通大学, 2018.
61 Ju Y, Shen T, Wang D. Construction and Building Materials, 2020, 242, 118024.
62 Shen Jie. The study on bonding behaviors of reactive power concrete and ordinary concrete. Master's Thesis, Beijing Jiaotong University, China, 2016 (in Chinese).
沈捷. 活性粉末混凝土与普通混凝土的粘结性能研究. 硕士学位论文, 北京交通大学, 2016.
63 Hussein L, Amleh L. Construction and Building Materials, 2015, 93, 1105.
64 Tayeh B A, Bakar B, Johari M, et al. Procedia Engineering, 2013, 54, 554.
65 Wang Xinwang. Research on the interfacil shear behavior of UHPC and reinforced concrete. Master's Thesis, Hunan University, China, 2016 (in Chinese).
王兴旺. UHPC与普通钢筋混凝土结构界面抗剪性能研究. 硕士学位论文, 湖南大学, 2016.
66 Wu Jie. Experiment research on the interfacial shear behavior of UHPC-NC structure under the condition of normal curing temperature. Master's Thesis, Hunan University, China, 2017 (in Chinese).
吴洁. 常温养护条件下UHPC-NC结构界面抗剪性能试验研究. 硕士学位论文, 湖南大学, 2017.
67 Alhallaq A F, Tayeh B A, Shihada S. International Journal of Enginee-ring and Advanced Technology, 2017, 6(3), 210.
68 He Y, Zhang X, Hooton R D, et al. Construction and Building Materials, 2017, 151, 582.
69 Ganesh P, Murthy A R. Construction and Building Materials, 2020, 250, 118871.
70 Erhard D, Chorinsky G. Springer US, 1986, 230.
71 Lukovic M, Ye G. Materials, 2016, 9(1), 2.
72 De l V I, Munoz J F, Bentz D P, et al. Construction and Building Mate-rials, 2018, 170, 747.
73 Bentz D P, Varga I, Muñoz J F, et al. Cement and Concrete Composites, 2018, 87, 63.
74 De l V I, Haber Z B, Graybeal B A. Journal of Materials in Civil Engineering, 2018, 30(4), 04018053. 1.
75 Semendary A A, Svecova D. Engineering Structures, 2020, 216.
76 Farzad M, Shafieifar M, Azizinamini A. Engineering Structures, 2019, 186, 297.
77 Beushausen H, Höhlig B, Talotti M. Cement and Concrete Research, 2017, 92, 84.
78 Ji Wenyu, Guo Minlong, Li Wangwang. China Railway Science, 2016, 37(1), 46 (in Chinese).
季文玉, 过民龙, 李旺旺. 中国铁道科学, 2016, 37(1), 46.
79 Jia Fangfang, He Kui, Wang Wanjin, et al. Journal of the China Railway Society, 2016, 38(3), 127 (in Chinese).
贾方方, 贺奎, 王万金, 等. 铁道学报, 2016, 38(3), 127.
80 Li X, Xu Q, Chen S. Construction and Building Materials, 2016, 105, 503.
81 Peng Q, Xu Q. Construction and Building Materials, 2018, 174, 120.
82 Gallaher B L. Evaluation of thin bonded overlays as a protective system for highway bridge decks. Master's Thesis, University of Colorado at Boulder, USA, 2013.
83 Li Pingxian, Zhang Leishun, Zhao Guofang, et al. Journal of Hydraulic Engineering, 2005, 36(5), 602 (in Chinese).
李平先, 张雷顺, 赵国藩, 等. 水利学报, 2005, 36(5), 602.
84 Gao Danying, Cheng Hongqiang, Feng Hu. Journal of Hydroelectric Engineering, 2009, 28(1), 152 (in Chinese).
高丹盈, 程红强, 冯虎. 水力发电学报, 2009, 28(1), 152.
85 Tayeh B A, Baka B H A, Johari M, et al. Construction & Building Materials, 2012, 36, 538.
86 Farzad, Fancy, Lau, et al. Infrastructures, 2019, 4(2), 18.
87 Shu Chang. Characterization of interface transition zone and freezing/thawing effect of concrete by nanoscratch tests. Master's Thesis, Shanghai Jiao Tong University, China, 2015 (in Chinese).
舒畅. 混凝土界面过渡区和冻融耐久性纳米划痕表征研究. 硕士学位论文, 上海交通大学, 2015.
88 Li Pingxian, Zhao Guofang, Zhang Leishun. Journal of Building Structures, 2004, 25(5), 111 (in Chinese).
李平先, 赵国藩, 张雷顺. 建筑结构学报, 2004, 25(5), 111.
89 Li Pingxian, Zhang Leishun, Zhao Guofang. Journal of Hydraulic Engineering, 2005, 36(3), 339 (in Chinese).
李平先, 张雷顺, 赵国藩. 水利学报, 2005, 36(3), 339.
90 Gao Danying, Hu Liangming, Cheng Hongqiang. Journal of Hydroelectric Engineering, 2007, 26(6), 52 (in Chinese).
高丹盈, 胡良明, 程红强. 水力发电学报, 2007, 26(6), 52.
91 Gao Danying, Feng Hu. Industrial Construction, 2008, 38(3), 80 (in Chinese).
高丹盈, 冯虎. 工业建筑, 2008, 38(3), 80.
92 Xie Jian, Chen Yujie, Sun Yadan. Bulletin of the Chinese Ceramic Society, 2021, 40(12), 3945.
谢剑, 陈玉洁, 孙雅丹. 硅酸盐通报, 2021, 40(12), 3945.
93 Lee M G, Wang Y C, Chiu C T. Construction and Building Materials, 2007, 21(1), 182.
[1] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[2] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[3] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[4] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[5] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[6] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[7] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[8] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[9] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[10] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[11] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[12] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[13] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[14] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[15] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed