Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 90-97    https://doi.org/10.11896/j.issn.1005-023X.2017.017.013
  材料综述 |
喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*
贺毅强1,2, 钱晨晨2, 李俊杰2, 周海生2
1 江苏省海洋资源开发研究院,连云港 222005;
2 淮海工学院机械工程学院,连云港 222005
Current Status of Dynamic Recrystallization Control and Strengthening-Toughening Mechanisms of Spray Deposited Aluminium Matrix Composites
HE Yiqiang1,2, QIAN Chenchen2, LI Junjie2 , ZHOU Haisheng2
1 Jiangsu Marine Resources Development Research Institute, Lianyungang 222005;
2 College of Mechanical Engineering, Huaihai Institute of Technology, Lianyungang 222005
下载:  全 文 ( PDF ) ( 1981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 喷射沉积颗粒增强铝基复合材料应用前景广阔,但因成形困难、强韧性低而受限,控制热变形过程中的动态再结晶行为和揭示强韧化机制是关键。综述了喷射沉积铝基复合材料致密化技术的分类与发展;概述了铝基复合材料在变形过程中的回复与再结晶;论述了喷射沉积铝基复合材料力学性能的影响因素,分析了导致强韧性降低的因素。展望了喷射沉积铝基复合材料的发展趋势,对铝基体动态再结晶行为的影响因素、颗粒增强铝基复合材料强韧性的影响机制及复杂微观组织下材料的强韧化机制、完善与发展喷射沉积材料的致密工艺和机理进行了探讨,并提出了提高材料力学性能和强韧性的措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺毅强
钱晨晨
李俊杰
周海生
关键词:  铝基复合材料  喷射沉积  颗粒增强  动态再结晶  强韧化机制    
Abstract: Spray deposited Al matrix composite reinforced with particles has an extensive application prospect for its excellent performances, but its application is restricted by its poor deformability and low ductility and toughness. Controlling dynamic recrystallization behavior and revealing mechanism of strengthening and toughening of the composite during hot deformation are most important. Classification and development of densification technologies of spray deposited Al-matrix composite are introduced. Recovery and dynamic recrystallization of Al-matrix composite during deformation process are summarized. Influence factors of mechanical properties of Al-matrix composite are discussed. Developing trend of spray deposited Al-matrix composite is prospected. Effects of reinforcing particles and dispersoids on recrystallization behavior, influencing mechanism of strength and toughness of Al composite reinforced with particles and development of processing and mechanism of densification of spray deposited Al-matrix composite are discussed. Methods for improving mechanical properties and toughness of the composite are provided.
Key words:  Al-matrix composite    spray deposition    particle reinforcement    dynamic recrystallization    strengthening-toughening mechanism
出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TG146.2  
基金资助: 江苏省自然科学基金(BK20141250; BE2015100); 江苏省高校自然科学研究面上项目(14KJB430005); 国家自然科学基金(51004050; 51301044); 连云港市科技计划项目(CG141; CXY1404); 江苏省海洋资源开发研究院开放基金(JSIMR201222); 江苏高校品牌专业建设工程资助项目(PPZY2015C214); 江苏省研究生培养创新工程项目(JGZZ_075)
作者简介:  贺毅强:男, 1981年生,教授, 主要从事喷射沉积铝基复合材料的研究 E-mail:ant210@126.com
引用本文:    
贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
HE Yiqiang, QIAN Chenchen, LI Junjie , ZHOU Haisheng. Current Status of Dynamic Recrystallization Control and Strengthening-Toughening Mechanisms of Spray Deposited Aluminium Matrix Composites. Materials Reports, 2017, 31(17): 90-97.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.013  或          https://www.mater-rep.com/CN/Y2017/V31/I17/90
1 Chen C G, Guo L C, Luo J, et al. Aluminum powder size and microstructure effects on properties of boron nitride reinforced aluminum matrix composites fabricated by semi-solid powder metallurgy[J]. Mater Sci Eng A,2015,646:304.
2 Gao F, Xu C, Zhang H P, et al.Core-shell structure Al-matrix composite with enhanced mechanical properties[J]. Mater Sci Eng A,2016,657:64.
3 Sabbaghianrad S, Langdon T G. Developing superplasticity in an aluminum matrix composite processed by high-pressure torsion[J]. Mater Sci Eng A,2016,655:36.
4 Chen X, Yang C X, Guan L D, et al. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition[J]. Mater Sci Eng A,2008,496(1-2):52.
5 Su B, Yan H G, Chen G, et al. Study on the preparation of the SiCP/Al-20Si-Cu functionally graded material using spray deposition[J]. Mater Sci Eng A,2010,527(24-25):6660.
6 Li W, Chen Z H, Chen D, et al. Low cycle fatigue behavior SiCP/Al-Si composites produced by spray deposition[J]. Mater Sci Eng A,2010,527(29-30):7631.
7 Mauduit D, Dusserre G, Cutard T. Probabilistic rupture analysis of a brittle spray deposited Si-Al alloy under thermal gradient: Characterization and thermoelastic[J]. Mater Design,2016:95:414.
8 Kim W, Alan A, Mohanty P S. Damping characteristics of a spray-deposited shape memory alloy beam[J]. J Sound Vibration,2014,333:3356.
9 Goudar D M, Raju K, Srivastava V C, et al. Effect of secondary processing on the microstructure and wear behavior of spray formed Al-30Mg2Si-2Cu alloy[J]. Mater Design,2013,47:489.
10 Yu H C, Wang M P, Jia Y L, et al. High strength and large ductility in spray-deposited Al-Zn-Mg-Cu alloys[J]. J Alloys Compd,2014,601:120.
11 Cai Yuanhua, Liang Ruiguang, Su Zhanpei, et al. Hot deformation behavior and microstructural stability of spray formed Al-22Si-5Fe alloy[J]. Acta Metall Sinica,2010,46(7):814(in Chinese).
蔡元华, 梁瑞光, 苏占培, 等. 喷射成形Al-22Si-5Fe合金的热变形行为及组织稳定性[J]. 金属学报,2010,46(7):814.
12 Wang F, Zhu B H, Xiong B Q, et al. An investigation on the microstructure and mechanical properties of spray-deposited Al-8.5Fe-1.1V-1.9Si alloy[J]. J Mater Process Technol,2007,183(2-3):386.
13 Jia Y D, Cao F Y, Scudino S, et al. Microstructure and thermal expansion behavior of spray-deposited Al-50Si[J]. Mater Design,2014,57:585.
14 Li H C, Cao F Y, Guo S, et al. Microstructure and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition[J]. J Alloys Compd,2017,691:482.
15 Tang Y P, Tan D Q, Li W X, et al. Preparation of AlFeVSi alloy by spray codeposition with added its oversprayed powders[J]. J Alloys Compd,2007,439(1-2):103.
16 Yu H C, Wang M P, Jia Y L, et al. High strength and large ductility in spray-deposited Al-Zn-Mg-Cu alloys[J]. J Alloys Compd,2014,601(15):120.
17 Guo B, Ge C C, Xu Y. Flow behavior and numerical simulation of spray-formed FGH 95 superalloy under hot compression[J]. J Iron Steel Res,2013,20(12):69.
18 Mazzer E M, Afonso C R M, Bolfarini C, et al. Microstructure study of Al 7050 alloy reprocessed by spray forming and hot-extrusion and aged at 121 ℃[J]. Intermetallics,2013,43:182.
19 Zhang H, Chen D, Chen Z H. Densification of spray deposited aluminum composite sheets via ceramic rolling technique[J]. Mater Manufactur Process,2008,23(5):479.
20 Chen Z G, Chen Z H, Tang G N. Processing, microstructure, and mechanical properties of large spray-deposited hypoeutec TiC Al-Si alloy tubular preform[J]. J Mater Eng Perform,2011,20(2):238.
21 Sun Y P, Yan H G, Chen Z H, et al. Effect of a novel sequential motion compaction process on the densification of multi-layer spray deposited 7090/SiCP composite[J]. J Mater Sci,2008,43(8):6200.
22 He Y Q, Tu H, Qiao B, et al. Tensile fracture behavior of spray deposited SiCP/Al-Fe-V-Si composite sheet[J]. Adv Compos Mater,2013,22(4):227.
23 He Yiqiang, Chen Zhenhua. Microstructure and mechanical property evolution of SiCP/Al-Fe-V-Si composite during sheet forming process[J]. Chinese J Nonferrous Metals,2012,22(12):3402(in Chinese).
贺毅强, 陈振华. SiCP/Al-Fe-V-Si的板材成形过程中显微组织和力学性能的演变[J].中国有色金属学报,2012,22(12):3402.
24 He Yiqiang, Hu Jianbin, Zhang Yi, et al. Microstructure and fracture behaviour of spray-deposited SiCP/Al-Fe-V-Si sheet as-rolled after wedge pressing[J]. Chinese J Nonferrous Metals,2014,24(8):2035(in Chinese).
贺毅强, 胡建斌, 张奕, 等. 喷射沉积SiCP/Al-Fe-V-Si板坯楔形压制后轧制的显微组织与断裂行为[J]. 中国有色金属学报,2014,24(8):2035.
25 Wang Chuangwei, Yin Jiancheng, Zhou Jingbo, et al. 2A12 aluminum alloy produced by spray forming conform[J]. Chinese J Nonferrous Metals,2013,23(4):957(in Chinese).
汪创伟, 尹建成, 周静波, 等. 喷射沉积连续挤压制备2A12铝合金[J]. 中国有色金属学报,2013,23(4):957.
26 Lai L, Shi C J, Chen X G. Effects of V addition on recrystallization resistance of 7150 aluminum alloy after simulative hot deformation[J]. Mater Character,2014,96:126.
27 Call R L, Jonas J J. Solute drag effect during the dynamic recrystallization of nickel[J]. Acta Mater,1999,47:4365.
28 Ouyang Delai, Lu Shiqiang, Huang Xu, et al. Critical conditions of dynamic recrystallization during deformation of β area in TA15 titanium alloy[J]. Chinese J Nonferrous Metals,2010,20(8):1539(in Chinese).
欧阳德来, 鲁世强, 黄旭, 等. TA15 钛合金β 区变形动态再结晶的临界条件[J]. 中国有色金属学报,2010,20(8):1539.
29 Pollak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ Int,2003,43(5):684.
30 Yang Zhiqiang, Liu Yong, Tian Baohong, et al. Hot deformation and dynamic recrystallization of TiC(30vol%)/Cu-Al2O3 composites[J]. Acta Mater Compos Sin,2015,32(1):117(in Chinese).
杨志强, 刘勇, 田保红, 等. TiC(30vol%)/Cu-Al2O3复合材料热变形及其动态再结晶[J]. 复合材料学报,2015,32(1):117.
31 Qiu Lili, Gao Wenli, Lu Zheng, et al. Flow behavior and microstructure of 7A85 aluminum alloy during hot compression[J]. J Mater Eng,2016,44(1):33(in Chinese).
仇琍丽, 高文理, 陆政, 等. 7A85铝合金的热压缩流变行为[J]. 材料工程,2016,44(1):33.
32 Zhang Peng, Li Fuguo. Dynamic recrystallization model of SiC particle reinforced aluminum matrix composites[J]. Rare Metal Mater Eng,2010,39(7):1166(in Chinese).
张鹏, 李付国. SiC 颗粒增强Al 基复合材料的动态再结晶模型[J]. 稀有金属材料与工程,2010,39(7):1166.
33 Sun Yali, Xie Jingpei, Hao Shiming, et al. Critical conditions of dynamic recrystallization of 30%SiCP/2024Al composite[J]. Trans Mater Heat Treatment,2015,36(9):7(in Chinese).
孙亚丽, 谢敬佩, 郝世明, 等. 30%SiCP /2024Al复合材料动态再结晶临界条件[J]. 材料热处理学报,2015,36(9):7.
34 Mao Changhui, Sun Xudong, Wang Tao, et al. Effect of thermal deformation on microstructure and mechanical properties of WCP/2024Al composites[J]. J Mater Metall,2012,11(4):292(in Chinese).
毛昌辉, 孙旭东, 王涛, 等. 热变形加工对WCP/2024Al复合材料组织结构和力学性能的影响[J].材料与冶金学报,2012,11(4):292.
35 Chen Z H, Chen Z G, Yan H G, et al. Novel method for densification of porous spray deposited Al-Fe-V-Si alloy tube performs[J]. Mater Sci Technol,2009,25(1):111.
36 Park J K, Lucas J P. Moisture effect on SiCp/6061 Al MMC: Dissolution of interfacial Al4C3[J]. Scripta Mater,1997,37(4):511.
37 Ci L J, Ryu Z Y, Jin P, et al. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum[J]. Acta Mater,2006,54(20):5367.
38 Tan Dunqiang, Li Wenxian, Chen Wei. Effect of melt temperature and cooling rate on microstructure and mechanical properties of Al-Fe-V-Si heat-resistant aluminum alloy[J]. J Aeronaut Mater,2006,26(5):14(in Chinese).
谭敦强, 黎文献, 陈伟. 熔体温度、冷却速率对Al-Fe-V-Si耐热铝合金组织和力学性能的影响[J]. 航空材料学报,2006,26(5):14.
39 He Y Q, Qiao B, Wang N, et al. A study on the interfacial structure of spray-deposited SiCP/Al-Fe-V-Si composite[J]. Adv Compos Lett,2009,18(3):137.
40 Yu Jingyu, Li Yulong, Zhou Hongxia, det al. Influence of particles size on the dynamic behavior of PMMCs[J]. Acta Mater Compos Sin,2005,22(5):31(in Chinese).
于敬宇,李玉龙, 周宏霞, 等. 颗粒尺寸对颗粒增强型金属基复合材料动态特性的影响[J]. 复合材料学报,2005,22(5):31.
41 El-Kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites[J]. Mater Design,2014,54(2):348.
42 Tajima Y, Kingery W D. Grain-boundary segregation in aluminium-doped silicon carbide[J]. J Mater Sci,1982,17(2):2289.
43 Cao L, Geng L, Yao C K, et al. Interface in silicon carbide whisker reinforced aluminum composites[J]. Scripta Metall,1989,23(2):227.
44 He Yiqiang, Wang Na, Qiao Bin, et al. SiC/Al interface feature of Al-Fe-V-Si alloy reinforced with SiC particles[J].Chinese J Nonferrous Metals,2010,20(7):1302(in Chinese).
贺毅强, 王娜, 乔斌, 等. SiC颗粒增强Al-Fe-V-Si复合材料的SiC/Al界面形貌[J].中国有色金属学报,2010,20(7):1302.
45 Zhao Y H, Zhu Y T, LaverniaE J. Strategies for improving ductility of bulk NSM[J]. Adv Eng Mater,2010,12:769.
46 Wu G H, Wang X, Jiang L T, et al. A nanostructural design to produce high ductility of high fraction SiCP/Al composites with enhanced strength[J]. Mater Design,2014,61:141.
47 Yuan W H, An B L. Effect of heat treatment on microstructure and mechanical property of extruded 7090/SiCP composite[J]. Trans Nonferrous Metals Soc China,2012,22:2080.
48 Valiev R Z, Islamgaliev R K, Kuzmina N F, et al. Strengthing and grain reinforcement in an Al-6061 metal matrix composite through intense plastic straining[J]. Scripta Mater,1999,40:117.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[3] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[4] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[5] 王清洲, 孙颖晖, 薛晓, 马士宾, 肖成志. 玻璃钢夹砂管涵夹砂层细观断裂数值模拟[J]. 材料导报, 2024, 38(17): 22100284-10.
[6] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[7] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[8] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[9] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[10] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[11] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[12] 高士康, 赵洪运, 李高辉, 周利, 刘会杰, 张成聪. 铝基复合材料搅拌摩擦焊研究现状[J]. 材料导报, 2022, 36(24): 21040264-9.
[13] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[14] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[15] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed