Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2842-2846    https://doi.org/10.11896/j.issn.1005-023X.2018.16.026
  金属与金属基复合材料 |
谐波减速器特殊钢材质柔轮的组织和力学性能分析
张朝磊1, 魏旸1, 方文1, 苗红生2, 巴鑫宇1, 刘雅政1
1 北京科技大学材料科学与工程学院,北京 100083;
2 西宁特殊钢股份有限公司,青海省特殊钢工程技术研究中心,西宁 810005
Microstructure and Mechanical Properties Analysis of the Special Steel Flexspline for Harmonic Reduction Gear
ZHANG Chaolei1, WEI Yang1, FANG Wen1, MIAO Hongsheng2, BA Xinyu1, LIU Yazheng1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
2 Qinghai Special Steel Engineering Technology Research Center, Xining Special Steel Co., Ltd., Xining 810005
下载:  全 文 ( PDF ) ( 3785KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过定量分析合金成分、显微组织,以及测定力学性能和观察断口,对比研究了某国产柔轮和日本哈默纳科的谐波减速器礼帽型特殊钢材质柔轮的组织和力学性能。结果表明:两者成分差异在于V-Ti-Nb复合微合金设计;国产柔轮组织不仅粗大,晶粒度比日本的小1.0~4.0级,而且稳定性差,晶粒度级差达3.0级;日本柔轮桶部、膜片部径向与周向的强度均具有很好的一致性;国产柔轮与日本柔轮的强度和塑性基本一致,但稳定性很差。国产柔轮的洁净度较差,存在直径为3.0~6.0 μm的Al2O3脆性夹杂物,以及组织粗大且不均匀是其疲劳寿命短和稳定性差的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张朝磊
魏旸
方文
苗红生
巴鑫宇
刘雅政
关键词:  工业机器人  谐波减速机  组织和性能  失效分析    
Abstract: Microstructure and mechanical properties of the domestic and foreign special steel flexsplines for harmonic reduction gear were comparatively analyzed by alloys composition, quantitative analysis of microstructure, determination of mechanical properties at room temperature and fracture analysis. The results showed that the difference in composition was in the design of V-Ti-Nb microalloys. Microstructure of the domestic flexspline was coarse, and it had poor stability. Its prior-austenite grain was 1.0-4.0 grade smaller than Japan’s, and the fluctuation of grain size reached 3.0 grade. Strength of the foreign flexspline at different positions was in good agreement, and strength and plasticity of the domestic and foreign flexsplines were basically the same. But mecha-nical properties stability of the domestic was poor. Insufficient cleanliness, Al2O3 brittle inclusions with diameter of 3.0-6.0 μm, coarse and uneven structure were the main causes of short life and stability fatigue resistance for the domestic flexspline.
Key words:  industrial robot    harmonic reduction gear    microstructure and properties    failure analysis
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TG142.1  
基金资助: 青海省重点研发与转化计划项目(2018-GX-C03)
作者简介:  张朝磊:男,博士,副教授,硕士研究生导师,主要从事材料组织性能控制,先进钢铁材料成分组织设计、质量控制与应用技术等研究 Tel:010-62333174 E-mail:zhangchaolei@ustb.edu.cn
引用本文:    
张朝磊, 魏旸, 方文, 苗红生, 巴鑫宇, 刘雅政. 谐波减速器特殊钢材质柔轮的组织和力学性能分析[J]. 材料导报, 2018, 32(16): 2842-2846.
ZHANG Chaolei, WEI Yang, FANG Wen, MIAO Hongsheng, BA Xinyu, LIU Yazheng. Microstructure and Mechanical Properties Analysis of the Special Steel Flexspline for Harmonic Reduction Gear. Materials Reports, 2018, 32(16): 2842-2846.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.026  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2842
1 Li Dan. Key technology of robot, the guarantee of intelligent manufacturing[J]. Aeronautical Manufacturing Technology,2016(13):24(in Chinese).
李丹.机器人关键技术——智能制造的保障[J].航空制造技术,2016(13):24.
2 Huang Xing, He Wenjie, Fu Yuanxiang. Summary of precision speed reducer of industrial robots[J]. Machine Tool & Hydraulics,2015,43(13):1(in Chinese).
黄兴,何文杰,符远翔.工业机器人精密减速器综述[J].机床与液压,2015,43(13):1.
3 Sun Yuqin. Tooth profile optimization design of cup flexspline harmonic drive[J]. Journal of Mechanical Transmission,2015,39(11):80(in Chinese).
孙玉芹.杯形柔轮谐波传动齿形优化设计[J].机械传动,2015,39(11):80.
4 Wang Jiaxu, Zhou Xiangxiang, Li Junyang, et al. Three dimensio-nal profile design of cup harmonic drive with double-circular-arc common-tangent tooth profile[J]. Journal of Zhejiang University (Engineering Science),2016,50(4):616(in Chinese).
王家序,周祥祥,李俊阳,等.杯形柔轮谐波传动三维双圆弧齿廓设计[J].浙江大学学报(工学版),2016,50(4):616.
5 Wu Shangsheng, Yu Zhongming. Cold rolling process and numerical simulation of residual stress for flexspline of harmonic reducer[J]. Journal of South China University of Technology (Natural Science Edition),2017,45(2):52(in Chinese).
吴上生,喻钟鸣.谐波减速器柔轮冷滚工艺及残余应力数值模拟[J].华南理工大学学报(自然科学版),2017,45(2):52.
6 Guo Gang, Zhong Jian. Nonlinear FEM analysis on deformation mechanism of flexspline driven by elastic wave generator[J]. Mechanical Research & Application,2015(2):11(in Chinese).
郭刚,钟健.波发生器作用下柔轮变形机理的非线性有限元分析[J].机械研究与应用,2015(2):11.
7 Xu Zhipeng. Finite element analysis of flexible wheel of harmonic reducer[J]. Modern Manufacturing Technology and Equipment,2017(3):49(in Chinese).
徐志鹏.谐波减速器柔轮的有限元分析[J].现代制造技术与装备,2017(3):49.
8 Zhang Qingru, Huang Dishan, Gu Jingjun. Buckling analysis for flexspline structure in harmonic drive with FEM[J]. Journal of Mechanical Transmission,2017,41(2):128(in Chinese).
张庆茹,黄迪山,顾京君.谐波减速器中柔轮结构屈曲有限元分析[J].机械传动,2017,41(2):128.
9 Feng Fei, Wang Wei, Tang Lina, et al. Application and development trends of the space harmonic reducer with high precision[J]. Journal of Mechanical Transmission,2014,38(10):98(in Chinese).
丰飞,王炜,唐丽娜,等.空间高精度谐波减速器的应用及其发展趋势[J].机械传动,2014,38(10):98.
10 Guan Jian, Wang Jiaxu, Han Yanfeng, et al. Analysis on mixed lubrication of harmonic reducer flexible bearing[J]. Tribology,2016,36(2):153(in Chinese).
关健,王家序,韩彦峰,等.谐波减速器柔性轴承混合润滑分析[J].摩擦学学报,2016,36(2):153.
11 Xia Tian, Jiang Peng, Ma Chao, et al. Research advance of the fai-lure mechanism and friction wear of flexible wheel of harmonic redu-cer[J]. Journal of Mechanical Transmission,2016,40(1):173(in Chinese).
夏田,江鹏,马超,等.谐波减速器柔轮摩擦磨损及失效机理研究进展[J].机械传动,2016,40(1):173.
12 Li Junyang, Wang Jiaxu, Zhou Guangwu, et al. Failure mechanism of harmonic drivers for space[J]. Tribology,2013,33(1):44(in Chinese).
李俊阳,王家序,周广武,等.空间润滑谐波减速器失效机理研究[J].摩擦学学报,2013,33(1):44.
[1] 张朝磊, 魏旸, 方文, 苗红生, 王青海. 非调质钢36MnVS4汽车发动机连杆胀断缺陷分析[J]. 《材料导报》期刊社, 2018, 32(14): 2458-2461.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed