Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2847-2851    https://doi.org/10.11896/j.issn.1005-023X.2018.16.027
  金属与金属基复合材料 |
超级13Cr油管钢在不同浓度Cl-介质中的腐蚀行为
王毅飞1, 谢发勤2
1 西北有色金属研究院,西安 710016;
2 西北工业大学航空学院,西安 710072
Corrosion Behaviors of Super 13Cr Tubing Steels in NaCl Solution with Different Concentration
WANG Yifei1, XIE Faqin2
1 Northwest Institute for Nonferrous Metal Research, Xi’an 710016;
2 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 2072KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用全浸腐蚀实验方法,通过扫描电子显微镜(SEM)、能谱分析(EDS)、X射线衍射分析(XRD)、失重法、极化曲线等分析手段,对超级13Cr油管钢在不同浓度(5%,15%,25%,35%,质量分数)的NaCl溶液中的腐蚀速率、腐蚀形貌、腐蚀产物及电化学特性进行了分析,研究了Cl-浓度对其腐蚀行为的影响。结果显示:超级13Cr油管钢在Cl-浓度低于35%的NaCl溶液中具有较好的耐腐蚀性能,Cl-浓度对其腐蚀行为有一定程度的影响,随着Cl-浓度的增大,材料的耐腐蚀性能降低,被腐蚀倾向增大。较高的Cl-浓度加速了材料表面点蚀的生长,引发局部腐蚀,进而导致全面腐蚀。Cl-浓度的增大使超级13Cr油管钢的腐蚀速率增大,但随着腐蚀程度的加重,腐蚀产物增厚及覆盖面积增大,阻碍了基体和溶液的接触,从而减缓了腐蚀速率的增速,其腐蚀产物主要是由Fe和Cr的氧化物构成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王毅飞
谢发勤
关键词:  超级13Cr油管钢  Cl-浓度  全浸腐蚀  点蚀    
Abstract: The corrosion behaviors of super 13Cr tubing steels were investigated by immersion corrosion test in 5%,15%,25% and 35% NaCl solution. The corrosion rate, corrosion morphology, corrosion products and electrochemistry characteristics were analyzed by scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffraction (XRD), weight loss and polarization. The results showed that super 13Cr tubing steels had better general corrosion resistance properties in NaCl solution with the concentration of Cl-less than 35%, and the concentration of Cl-had influences on the corrosion of super 13Cr tubing steels in a certain degree. With the concentration of Cl-increased, the corrosion resistance properties of super 13Cr tubing steels decreased,while the tendency of corrosion increased. The higher concentration of Cl-accelerated the growth of pitting on the surface of the super 13Cr tubing steels, that caused localized corrosion, and then resulted in general corrosion. The corrosion rate increased with the increase of Cl-concentration, but with the corrosion degree aggravated, the corrosion products became thicker and the covering area increased, which isolated the contact between the substrate and the solution, thus slowing down the corrosion rate. The corrosion products consisted of Fe and Cr oxides.
Key words:  super 13Cr tubing steels    Cl-concentration    immersion corrosion    pitting
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TG174.2  
基金资助: 陕西省自然科学基础研究计划(2017JM5056)
作者简介:  王毅飞:1986年生,硕士,主要研究方向为材料的腐蚀与表面技术 E-mail:254609634@qq.com
引用本文:    
王毅飞, 谢发勤. 超级13Cr油管钢在不同浓度Cl-介质中的腐蚀行为[J]. 材料导报, 2018, 32(16): 2847-2851.
WANG Yifei, XIE Faqin. Corrosion Behaviors of Super 13Cr Tubing Steels in NaCl Solution with Different Concentration. Materials Reports, 2018, 32(16): 2847-2851.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.027  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2847
1 李鹤林. “石油管工程”的研究领域、初步成果和展望[M].北京:石油工业出版社,1999.
2 李鹤林,路民旭.油气田腐蚀类型、特点和几个重要研究领域[C]//中国腐蚀与防护学会成立20周年暨’99学术年会.北京:中国腐蚀与防护学会,1999.
3 Li H L, Zhang Y P, Han L H. Development situation of OCTG and production localization of hi-grade OCTG(partⅠ)[J]. Steel Pipe,2007,36(6):1(in Chinese).
李鹤林,张亚平,韩礼红.油井管发展动向及高性能油井管国产化(上)[J].钢管,2007,36(6):1.
4 Lv X H, Zhao G X, Zhang J B, et al. Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment[J].Journal of University of Science and Technology Beijing,2010,32(2):207(in Chinese).
吕祥鸿,赵国仙,张建兵,等.超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为[J].北京科技大学学报,2010,32(2):207.
5 Pistorius P C, Burstein G T. Metastable pitting corrosion of stainless steels and the transition to stability[J]. Philosophical Transactions: Physical Sciences and Engineering,1992,341:531.
6 Ernst P, Newman R C. The mechanism of lacy cover formation in pitting[J]. Corrosion Science,1997,39(6):1133.
7 Zhang H R, Hao Y. Corrosion behavior of AZ91D magnesium alloy in Cl- solution[J]. Research Studies on Foundry Equipment,2007(3):19(in Chinese).
张汉茹,郝远.AZ91D镁合金在含Cl-溶液中腐蚀机理的研究[J].铸造设备研究,2007(3):19.
8 刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社,2006:15.
9 Smialowska Z S. Pitting corrosion of metals[M]. Texas: NACE,1986:126.
10 Newrnan R C. Dissolution and passivation kinetics of stainless alloys containing molybdenum coulometric studies of Fe-Cr and Fe-Cr-Mo alloys[J]. Corrosion Science,1985,25(5):331.
11 Wang X Y. Corrosion behavior in 3.5% NaCl solution of 316 SS passinated in an oxidizing acid liquor[J]. Corrosion Science and Production Technology,2000,12(6):311(in Chinese).
汪轩义.316L不锈钢钝化膜在Cl-介质中的耐蚀机制[J].腐蚀科学与防护技术,2000,12(6):311.
12 Wu W W, Jiang Y M, Liao J X, et al. Influence of Cl-on critical pitting temperature for 314 and 316 stainless steels[J]. Corrosion Science and Production Technology,2007,27(1):16(in Chinese).
吴玮巍,蒋益明,廖家兴,等.Cl离子对304、316不锈钢临界点蚀温度的影响[J],腐蚀科学与防护技术,2007,27(1):16.
13 Feng H T, Li T, Li X G, et al. Influence of Cl- concentration on the corrosion behavior of 2A12 aluminum alloy[J]. Journal of Inner Mongolia University Science and Technology,2010,29(2):136(in Chinese).
冯海涛,李涛,李晓刚,等.Cl-含量对2A12铝合金腐蚀行为的影响[J].内蒙古科技大学学报,2010,29(2):136.
[1] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[2] 庞宗旭, 朱荣, 涂凯路, 唐天平, 张艺博. 含Ce2O3氧化物对改善双相不锈钢亚稳态点蚀的机理研究*[J]. 《材料导报》期刊社, 2017, 31(16): 81-88.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed